Asymmetric synthesis of tetrahydrofurans by competitive [1,2]phenylsulfanyl (PhS) migrations under thermodynamic control

Lorenzo Caggiano, ${ }^{a}$ David J. Fox, ${ }^{\text {b }}$ David House, ${ }^{c}$ Zoe A. Jones, ${ }^{b}$ Fraser Kerr ${ }^{d}$ and Stuart Warren *b
${ }^{a}$ Università degli Studi di Milano, Dipartimento di Chimica Organica e Industriale, Via Venezian 21, 20133 Milano, Italy
${ }^{\text {b }}$ University Chemical Laboratory, Lensfield Road, Cambridge, UK CB2 1EW. E-mail: sw134@cam.ac.uk
${ }^{c}$ Dyson Perrins Laboratory, South Parks Road, Oxford, UK $0 X 1$ 3QY
${ }^{d}$ AstraZeneca, Hurdsfield Industrial Estate, Macclesfield, Cheshire, UK SK10 2NA

Received (in Cambridge, UK) 3rd September 2002, Accepted 2nd October 2002
First published as an Advance Article on the web 7th November 2002

Triols were prepared in enantiomerically enriched form by a short route that included a Sharpless asymmetric dihydroxylation; treatment of these triols with toluene- p-sulfonic acid gave THFs as thermodynamic products.

In a short series of papers ${ }^{1}$ we reported the outcome of sulfanyl ${ }^{2}$ mediated competitive cyclisations between two hydroxy groups of $2,4,5$-triols (bearing a phenylsulfanyl group at C-1). For these types of compounds four modes of cyclisation are conceptually possible: routes A to \mathbf{D} (Scheme 1).

Scheme 1 Reagents: i, $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Route \mathbf{A} could be ignored because oxetanes (e.g. 1) are too high in energy to be isolated from these cyclisation reactions. ${ }^{3}$ We wished to ascertain which of the modes of cyclisation, B (to give the 'unrearranged' ${ }^{4}$ THF 2), C (to give the 'rearranged'4 THF 3) or D (to give the rearranged THP 4) would be operative under acid catalysis. In a closely related study Gruttadauria has reported the outcome of selenium-mediated competitive cyclisations, with the observation that THFs were formed under kinetic conditions but these THFs slowly equilibrated (E) to THPs (Scheme 2). ${ }^{5}$ More recently Borhan has examined the same problem in the context of epoxide opening and showed that THFs are produced under kinetic conditions. By incorporation of a phenylsulfanyl group the regiochemistry of the epoxide opening could be reversed ($c f . \mathbf{F}$ and \mathbf{G}, Scheme 2) to give isomeric THFs. ${ }^{6}$

Three sets of diastereomeric $2,4,5$-triols were prepared so that their cyclisations could be studied. Each of the three sets had a different migration origin in order that we could demonstrate the generality of the cyclisation outcome. In the first series (triols $\mathbf{5}$ and 8) the sulfanyl group was bound to a gem-dimethyl substituted carbon atom (Fig. 1). The second pair

Fig. 1 2,4,5-Triols for cyclisation reactions.
of triols ($\mathbf{6}$ and 9) had a cyclohexane ring present and the final set (triols 7 and 10) had a THP ring present in order that we could prepare some unusual dioxaspirocycles that are not trivial to prepare by other routes. ${ }^{7}$ The triols could be synthesised asymmetrically: Sharpless asymmetric dihydroxylation (AD) ${ }^{8}$ of a homoallylic ketone being the key step in our route to these compounds.

In each case the synthesis started from an α-phenylsulfanyl aldehyde (11, 12 or 13), compounds which were easily synthesised on a large scale by sulfenylation of the appropriate silyl enol ethers with phenylsulfenyl chloride (Scheme 3). ${ }^{9}$ Addition of allylmagnesium bromide to each of the aldehydes to give the homoallylic alcohols (14-16) was followed by oxidation with Corey's PCC reagent ${ }^{10}$ to give good yields of the homoallylic ketones (17-19). We were pleased to observe that no trace of double bond isomerisation to give the conjugated enones was observed.

The AD reaction gave optimum enantiomeric excess (73$84 \%$) for the diols ($\mathbf{2 0} \mathbf{- 2 2}$) when Sharpless' PYR ligand was used. ${ }^{11 a}$ Reaction using the commercially available AD mixes (which contain the PHAL ligand ${ }^{11 b}$) resulted in much lower enantioselectivities (typically 30\%). The final stage of the stereocontrolled triol synthesis was a 1,3-diastereoselective reduction

Epimerisation of seleniranium ions

Scheme 2 Reagents: i, $\mathrm{HClO}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; ii, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ to rt; iii, $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, $60^{\circ} \mathrm{C}$.

8; 90\%, 88:12 syn:anti 9; 90\%, 83:17 syn:anti 10; 33\% (isolated syn)
Scheme 3 Reagents: i, $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{MgBr}^{2}, \mathrm{Et}_{2} \mathrm{O}$, rt; ii, $\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; iii, $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}$, chiral ligand, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, \mathrm{Bu}{ }^{\mathrm{t}} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; iv, $\mathrm{Me}_{4} \mathrm{~N}^{+} \mathrm{BH}(\mathrm{OAc})_{3}{ }^{-}$, $\mathrm{AcOH}-\mathrm{MeCN},-20{ }^{\circ} \mathrm{C}, 7$ days; v, $\mathrm{Et}_{2} \mathrm{BOMe}, \mathrm{THF}-\mathrm{MeOH},-78{ }^{\circ} \mathrm{C}$ then NaBH_{4}. *Chiral ligand used was either: (1) $(\mathrm{DHQD})_{2} \mathrm{PHAL}$ or (2) (DHQD) $)_{2} \mathrm{PYR}$.
to give either the 2,4 -anti ${ }^{12}(5-7)$ or the 2,4 -syn ${ }^{13}$ diastereoisomers $(\mathbf{8}-\mathbf{1 0})$ of each triol. Racemic standards of the triols could also be prepared in large quantities by racemic dihydroxyl-
ation ${ }^{14}$ of the homoallylic alcohols (14-16) and straightforward separation of the 2,4-related diastereoisomers by column chromatography. Little diastereoselection was observed in the

Table 1 Product distribution for the acid catalysed rearrangement of triol 6

Reaction time/hours	Product ratio, THF 23:THP 24
0.167	$56: 44$
1.25	$66: 34$
24	$96: 4$
48	$>98: 2$

Table 2 Product distribution for the acid catalysed rearrangement of triol 9

Reaction time/hours	Product ratio, THF 25:THP 26
0.167	$63: 37$
1.33	$71: 29$
24	$89: 11$
48	$>98: 2$

racemic dihydroxylation reaction but in this way large quantities of the triols were made available to study the cyclisations.

To begin with, the triols $\mathbf{6}$ and 9 (from the second set) were subjected to our standard conditions for cyclisation: a tenminute reflux with five $\mathrm{mol}^{\mathrm{l}} \%$ toluene- p-sulfonic acid in dichloromethane. To our initial disappointment triol 6 gave a $56: 44$ mixture of THF 23 and THP 24 (Scheme 4, Table 1). Previously we have shown that these cyclisation reactions are under thermodynamic control, ${ }^{15,16}$ so resubmitting this mixture to the reaction conditions, or taking a fresh sample of the triol 6, and heating to reflux in dichloromethane for 48 hours led to the complete conversion into the spirocyclic THF 23 (Scheme 4). Similarly, the syn-triol 9 gave an initial product distribution of 63:37 THF 25:THP 26, but after a prolonged reflux (48 hours) gave only THF 25 (Scheme 4, Table 2).

Scheme 4 Reagents: i, $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}$.
Rearrangement of the two other structurally related sets of triols ($\mathbf{5}$ and $\mathbf{8}$) and ($\mathbf{7}$ and 10) again led to THF-THP mixtures after short reaction times. Longer reaction times (48 hours) gave the rearranged THFs 3 and 27 (for the second series) and 28 and 29 (for the third series) (Scheme 5).

The THFs and THPs are clearly distinguished by their ${ }^{1} \mathrm{H}$ NMR spectra. The methine proton on the carbon atom bound to the PhS group appears as a double doublet for the THPs (with typical ${ }^{3} J_{\text {ax-ax }}$ and ${ }^{3} J_{\text {ax-eq }}$ coupling constants), whereas for the THFs this methine signal appears as a triplet (or at least a double doublet with very similar coupling constants). We were also able to prove unambiguously that the stereochemistry in the triol precursor is faithfully translated into the cyclised product (i.e. with stereochemical inversion taking place at C-2). This proof was obtained by single crystal X-ray diffraction on the 3,5-dinitrobenzoate ester $\mathbf{3 0}$ (Fig. 2, Table 3) of the syn-THP 4 (derived from anti-triol 5).

Table 3 Summary of crystal data, data collection, structure solution and refinement data for compound $\mathbf{3 0}$

Scheme 5 Reagents: i, TsOH, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}, 48 \mathrm{~h}$.

Fig. 2 X-Ray crystal structure of the 3,5-dinitrobenzoate derivative 30 of the syn-THP $\mathbf{4}$ formed by rearrangement of anti-triol 5 .

It was possible to follow the course of the [1,2]-PhS rearrangement in CDCl_{3} over a period of 24 hours by NMR. Fig. 3 shows the $3.0-5.0 \mathrm{ppm}$ region for a selection of ${ }^{1} \mathrm{H}$ NMR spectra recorded during this period. The initial spectrum (top of Fig. 3) is that of the triol 5 . After two hours at $40^{\circ} \mathrm{C}$ the spectrum clearly shows a mixture of four compounds: the triol 5 , and each of the three cyclisation products 2,3 and 4 (i.e. resulting from cyclisations B, C and D, Scheme 1). At much longer reaction times (e.g. 9 hours) almost none of the unrearranged THF 2 remains, but THF $\mathbf{3}$ and THP $\mathbf{4}$ are still present in a ratio of $1: 1$. The final spectrum, recorded after 36 hours,

Table 4 Molecular modelling data obtained using MOPAC software with PM3 parameters

	Compound number	Compound type	Energy range/kcal mol ${ }^{-1}$
$\mathbf{1}$	Oxetane	-82.9 to -77.2	
	Unrearranged THF	-98.1 to -95.0	
	$\mathbf{4}$	Rearranged THP	-101.0 to -98.2

Fig. $3{ }^{1} \mathrm{H}$ NMR spectra recorded in CDCl_{3} at $40{ }^{\circ} \mathrm{C}$ at specified intervals to show the rearrangement of triol 5 under equilibrating conditions. Spectrum 1 shows triol 5 immediately after addition of TsOH (OH couplings removed); spectrum 2 shows four compounds present: triol $5\left(\delta_{\mathrm{H}} \sim 4.0\right)$, unrearranged THF $2\left(\delta_{\mathrm{H}} \sim 4.5\right)$, THF $3\left(\delta_{\mathrm{H}} \sim 4.2\right)$ and THP $4\left(\delta_{\mathrm{H}} \sim 3.1\right)$; spectrum 4 reveals only two major components present: THF 3 and THP 4; and finally spectrum 5 shows equilibration nearing completion: THF $\mathbf{3}$ is now the major component [note the presence of the characteristic THF signal $\delta_{\mathrm{H}} \sim$ $3.45(1 \mathrm{H}, \mathrm{t})$]

Stereochemistry decides

Ring size decides

Scheme 6 Reagents: i, $\mathrm{TsOH}, \mathrm{C}_{6} \mathrm{H}_{6}, 80^{\circ} \mathrm{C}$; ii, $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}$.

Scheme 7 Reagents: i, $\mathrm{Mg}, \mathrm{Et}_{2} \mathrm{O}$; ii, cyclohexanone; iii, $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}$, quinuclidine, $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{Bu}^{\mathrm{t} O H}-\mathrm{H}_{2} \mathrm{O}$; iv, $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}, 40{ }^{\circ} \mathrm{C}$, 3 days.
the stepwise mechanism operates a competing E1 pathway is generally found. This reaction demonstrates the importance of sulfur in our cyclisation reactions; the phenylsulfanyl group plays a vital role in controlling the mechanism of the reaction. Stereochemical inversion is always observed even where the electrophilic carbon atom may display a near planar geometry. For this reason no departure from stereospecific cyclisation has ever been observed for cyclisations with [1,2]PhS migration.

In summary we have demonstrated a viable route for the asymmetric synthesis of 2,4,5-triols and provided firm evidence that [1,2]-PhS rearrangements are under thermodynamic control. For a simple class of triols $\mathbf{5} \mathbf{- 1 0}$ the most stable products are the THFs 3,23,25 and 27-29 (Schemes 4 and 5). We believe that the difference in product stability between the 5- and 6-membered rings can be attributed to the gem-disubstituted migration origin. In other cases we have investigated whether the relative stability of products may be dependent on ring-size, stereochemistry or a thermodynamic Thorpe-Ingold effect. ${ }^{19,20}$ We are now looking at applying these cyclisation reactions to the synthesis of C_{2}-symmetrical bis-THFs (e.g. 40) and bisTHPs (e.g. 41), which may be interesting compounds in their own right (Fig. 4).

40

41

Fig. $4 \quad C_{2}$-symmetrical bis-THF and THPs.

Experimental

All solvents were distilled before use. Tetrahydrofuran and diethyl ether were freshly distilled from lithium aluminium hydride whilst dichloromethane and acetonitrile were freshly distilled from calcium hydride. Triphenylmethane was used as an indicator for tetrahydrofuran. Pyridine was dried by distillation from calcium hydride and was stored over $4 \AA$ molecular sieves. All non-aqueous reactions were carried out under argon using oven-dried glassware.

Flash column chromatography was carried out using Merck Kieselgel 60 (230-400 mesh). Thin layer chromatography was performed on commercially available pre-coated plates (Merck silica Kieselgel $60 \mathrm{~F}_{254}$). Preparative HPLC was performed using a Zorbax SIL prepacked silica column (21.2 mm id $\times 25 \mathrm{~cm}$) with a Gilson model 303 pump and a Cecil Instruments CE 212A UV detection system measuring the absorbance at 254 nm. Analytical HPLC was performed using either a Zorbax RX-C8 prepacked reverse phase silica column or a Daicel Chiralpak AD column with a Spectra-Physics SP8800 pump, a Spectra-Physics SP8450 UV detection system and a ChromJet single channel integrator.

Proton and carbon NMR spectra were recorded on Bruker DPX 250, AM 400, DRX 400 or DRX 500 Fourier transform spectrometers using an internal deuterium lock. Chemical shifts
are quoted in parts per million (ppm) downfield of tetramethylsilane. Coupling constants J are quoted in Hz and are not rationalised. The symbol* after the proton NMR chemical shift indicates that the signal disappears after a $\mathrm{D}_{2} \mathrm{O}$ "shake". Carbon NMR spectra were recorded with broad band proton decoupling and Attached Proton Test. The symbols ${ }^{+}$and ${ }^{-}$ after the carbon NMR chemical shift indicate odd and even numbers of attached protons respectively.

Melting points were measured on a Stuart Scientific SMP1 melting point apparatus and are uncorrected. Infrared spectra were recorded on a Perkin-Elmer 1600 FTIR spectrophotometer. Electron Impact (EI) mass spectra were recorded on a Kratos double focusing magnetic sector instrument using a DS503 data system for high-resolution analysis. Fast atom bombardment (FAB) mass spectra were obtained from a Kratos MS 890 instrument. Electrospray (+ES) mass spectra were recorded using a Brucker Bio-Apex FT-ICR instrument and LCMS using a Hewlett Packard HPLC system, eluting with an acetonitrile-water gradient, in conjunction with positive and negative ion electrospray mass spectrometry.

Optical rotations were recorded on a Perkin-Elmer 241 polarimeter (using the sodium D line; 589 nm) and $[a]_{\mathrm{D}}$ are given in units of $10^{-1} \mathrm{deg} \mathrm{dm}{ }^{2} \mathrm{~g}^{-1}$.

(3RS,5SR)-2,2-Dimethyl-3-phenylsulfanyltetrahydrofuran-5ylmethanol 3

Toluene- p-sulfonic acid ($1.7 \mathrm{mg}, 9.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) was added to a stirred solution of the anti-triol $5(50 \mathrm{mg}, 195 \mu \mathrm{~mol})$ in dichloromethane ($2.5 \mathrm{~cm}^{3}$). The reaction temperature was raised to $50{ }^{\circ} \mathrm{C}$ to initiate reflux and heating continued for 48 hours. The mixture was cooled to room temperature and then filtered through a short plug of silica, eluting with dichloromethane, and the solvent was evaporated under reduced pressure to give a crude product. Purification by column chromatography [light petroleum (bp $40-60^{\circ} \mathrm{C}$)-diethyl ether, 1:1] gave the ${ }^{3,5}$ anti-tetrahydrofuran $3(42 \mathrm{mg}, 90 \%)$ after 48 hours as an oil; R_{f} light petroleum (bp $40-60^{\circ} \mathrm{C}$)-diethyl ether, 1:1] 0.12; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3593(\mathrm{O}-\mathrm{H})$, 3052, 2978, 2929, 2879, 1583, 1480, 1420, 1382, 1369, 1142, 1091, 1034 and 896; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.44-7.19(5 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 4.17(1 \mathrm{H}, \mathrm{dtd}$, $J 8.3,4.8$ and $3.3 \mathrm{~Hz}, \mathrm{CH}-\mathrm{O}), 3.68(1 \mathrm{H}$, ddd, $J 11.5,5.3$ and 3.0 $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.46\left(1 \mathrm{H}\right.$, ddd, $J 11.8,7.3$ and $4.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}^{-}}$ $\left.H_{\mathrm{B}} \mathrm{OH}\right), 3.36(1 \mathrm{H}$, dd, $J 9.5$ and $8.5 \mathrm{~Hz}, \mathrm{CHSPh}), 2.34(1 \mathrm{H}$, ddd, $J 13.0,8.3$ and $\left.4.8 \mathrm{~Hz}, \mathrm{C}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.13(1 \mathrm{H}$, ddd, $J 13.0,9.3$ and $\left.8.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.03^{*}(1 \mathrm{H}$, dd, $J 7.0$ and $5.8 \mathrm{~Hz}, \mathrm{OH}$), $1.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{A}}\right)$ and $1.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 135.6^{-}(i-\mathrm{PhS}), 131.2^{+}, 129.0^{+}, 126.9^{+}(p-\mathrm{PhS}), 83.6^{-}$ $(\mathrm{C}-\mathrm{O}), 75.6^{+}(\mathrm{CHOH}), 65.2^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right), 55.1^{+}(\mathrm{CHSPh}), 35.7^{-}$ $\left(\mathrm{CH}_{2}\right), 27.5^{+}(\mathrm{Me})$ and $22.2^{+}(\mathrm{Me}) ; m / z(\mathrm{EI}) 238\left(41 \%, \mathrm{M}^{+}\right)$, 207 (22, $\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{OH}$), 180 (94, $\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{CO}$), 169 (26), 149 (100, $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{SPh}^{+}$), 131 (82) and 119 (61); (Found: $\mathrm{M}^{+}, 236.1027$. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$ requires M, 238.1027)

(2R,4R)-5-Methyl-5-phenylsulfanylhexane-1,2,4-triol 5

Glacial acetic acid ($20 \mathrm{~cm}^{3}$) was added to a stirred suspension of tetramethylammonium triacetoxyborohydride ${ }^{12}(8.0 \mathrm{~g}, 30.4$
mmol, 10 eq.) in acetonitrile $\left(20 \mathrm{~cm}^{3}\right)$ and the resulting mixture stirred for 30 minutes at room temperature to give a colourless solution. This solution was cooled to $-30^{\circ} \mathrm{C}$ and a solution of β-hydroxyketone $20(1.00 \mathrm{~g}, 3.93 \mathrm{mmol})$ in acetonitrile $\left(5 \mathrm{~cm}^{3}\right)$ was added. The solution was then transferred to a freezer $\left(-25^{\circ} \mathrm{C}\right)$ for 1 week. The reaction was quenched by addition of aqueous sodium potassium tartrate solution $\left(1.0 \mathrm{~mol} \mathrm{dm}^{-3}, 10\right.$ cm^{3}) and the mixture allowed to warm slowly to room temperature. The reaction mixture was then diluted with dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ and washed with saturated aqueous sodium bicarbonate solution. The aqueous layer was extracted with dichloromethane $\left(4 \times 10 \mathrm{~cm}^{3}\right)$, the combined organic layers dried over anhydrous magnesium sulfate and the solvent removed under vacuum to give a crude product. Purification by column chromatography (silica, ethyl acetate) gave syn-triol $\mathbf{8}$ ($56 \mathrm{mg}, 6 \%$) as an oil, R_{f} (ethyl acetate) 0.23 (see below) and anti-triol 5 ($880 \mathrm{mg}, 87 \%$) as a white amorphous solid; R_{f} (ethyl acetate) 0.13 ; retention time $/ \mathrm{min}$ (isocratic HPLC 62:38 $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O} ; 0.1 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, 0.1 \% \mathrm{Et}_{3} \mathrm{~N}$; flow rate $1 \mathrm{~cm}^{3}$ $\left.\min ^{-1}\right) 5.58 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3615(\mathrm{O}-\mathrm{H}), 3472(\mathrm{O}-\mathrm{H}), 3059$, 2934 and $2856 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.54-7.46(2 \mathrm{H}, \mathrm{m}, \mathrm{PhS})$, 7.42-7.29 (3 H, m, PhS), 4.02-3.93 (1 H, m, CHOH), $3.66(1 \mathrm{H}$, ddd, $J 10.9,6.7$ and $\left.3.6 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.61(1 \mathrm{H}, \mathrm{dt}, J 10.4$ and $2.2 \mathrm{~Hz}, \mathrm{PhSCCHOH}), 3.54(1 \mathrm{H}$, ddd, $J 11.3,6.8$ and 5.1 $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 3.23^{*}(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.59^{*}(1 \mathrm{H}, \mathrm{d}, J 5.5 \mathrm{~Hz}$, $\mathrm{OH}), 2.14^{*}\left(1 \mathrm{H}, \mathrm{t}, J 5.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 1.66(1 \mathrm{H}$, ddt, $J 13.9$, 7.8 and $\left.2.0 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.56(1 \mathrm{H}$, ddd, $J 14.1,10.4$ and 4.2 $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{A}}\right)$ and $1.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(100.6$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 137.4^{+}(m-\mathrm{PhS}), 130.1^{-}(i-\mathrm{PhS}), 129.4^{+}(p-\mathrm{PhS})$, $128.9^{+} \quad(o-\mathrm{PhS}), \quad 71.7^{+}(\mathrm{CHOH}), \quad 70.2^{+}(\mathrm{CHOH}), \quad 66.8^{-}$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 55.2^{-}(\mathrm{CSPh}), 33.4^{-}\left(\mathrm{CH}_{2}\right), 25.7^{+}(\mathrm{Me})$ and 22.0^{+} (Me); $m / z(+\mathrm{FAB}) 279\left(20 \%, \mathrm{MNa}^{+}\right), 257\left(17, \mathrm{MH}^{+}\right), 239$ (94), 154 (97), 151 ($100, \mathrm{Me}_{2} \mathrm{CSPh}^{+}$), 136 (82), 129 (100) and 110 (37, PhSH^{+}); (Found: MNa^{+}, 279.1014. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{SNa}$ requires 279.1025).

(1R,3R)-[1-(Phenylsulfanyl)cyclohexyl]butane-1,3,4-triol 6

By the method described for compound 5, glacial acetic acid $\left(7.5 \mathrm{~cm}^{3}\right)$, tetramethylammonium triacetoxyborohydride (3.58 $\mathrm{g}, 13.6 \mathrm{mmol}, 8$ eq.) in acetonitrile $\left(7.5 \mathrm{~cm}^{3}\right)$ and β-hydroxyketone $21(500 \mathrm{mg}, 1.70 \mathrm{mmol})$ in acetonitrile $\left(2 \mathrm{~cm}^{3}\right)$ gave a crude product after one week. Purification by column chromatography (silica, ethyl acetate) gave syn-triol 9 (see below) (40 $\mathrm{mg}, 8 \%$) as an oil; R_{f} (ethyl acetate) 0.22 and anti-triol $6(437 \mathrm{mg}$, 87%) as an amorphous white solid; R_{f} (ethyl acetate) 0.32 ; retention time/min (isocratic HPLC $62: 38 \mathrm{H}_{2} \mathrm{O}: \mathrm{MeCN}$; 0.1% $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \quad 0.1 \% \mathrm{Et}_{3} \mathrm{~N}$; flow rate $1 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$) 14.01; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3615(\mathrm{O}-\mathrm{H}), 3472(\mathrm{O}-\mathrm{H}), 3069,2936$ and 2856; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.54-7.50(2 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 7.43-7.30$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$), 4.01-3.93 (1 H, m, CHOH), 3.64 (1 H , ddd, $J 11.0,6.8$ and $\left.3.6 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.61(1 \mathrm{H}, \mathrm{dt}, J 10.6$ and 2.3 $\mathrm{Hz}, \mathrm{PhSCCHOH}), 3.53(1 \mathrm{H}$, ddd, $J 11.8,6.9$ and 5.2 Hz , $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 3.24^{*}(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.59^{*}(1 \mathrm{H}, \mathrm{d}, J 5.5 \mathrm{~Hz}, \mathrm{OH})$; $2.14^{*}(1 \mathrm{H}, \mathrm{t}, J 6.0 \mathrm{~Hz}, \mathrm{OH}), 2.06-1.14(12 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(100.6$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 137.2^{+}, 129.9^{-}(i-\mathrm{PhS}), 129.2^{+}, 129.0^{+}, 71.4^{+}$ $(\mathrm{CHOH}), 70.3^{+}(\mathrm{CHOH}), 66.8^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right), 61.4^{-}(\mathrm{CSPh})$, $33.4^{-}, 30.5^{-}, 29.6^{-}, 26.2^{-}, 21.8^{-}$and $21.8^{-} ; \mathrm{m} / \mathrm{z}$ (EI) 296 (5%, $\left.\mathrm{M}^{+}\right), 278$ (12), 191 (100, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}^{+}$), 181 (33), 169 (37), 149 (19), 131 (76), 119 (56) and 110 (52, PhSH^{+}); (Found: M^{+}, 296.1443. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 296.1446$).

(1R,3R)-1-[4-(Phenylsulfanyl)tetrahydropyran-4-yl]butane-1,3,4-triol 7

By the method described for compound 5, glacial acetic acid $\left(5 \mathrm{~cm}^{3}\right)$, tetramethylammonium triacetoxyborohydride $(2.35 \mathrm{~g}$, 8.96 mmol , 8 eq.) in acetonitrile ($5 \mathrm{~cm}^{3}$) and β-hydroxyketone $22(330 \mathrm{mg}, 1.12 \mathrm{mmol})$ in acetonitrile $\left(1.6 \mathrm{~cm}^{3}\right)$ gave a crude product after one week. Purification by column chromatography (silica, ethyl acetate-methanol 49:1) gave the anti-triol 7
as an oil $(90 \mathrm{mg}, 27 \%) ; R_{\mathrm{f}}$ (ethyl acetate-methanol, 49:1) 0.28 ; $[a]_{\mathrm{D}}+8.8\left(c .0 .49\right.$ in $\mathrm{CHCl}_{3} ; 78 \%$ ee $) ; v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3610$ $(\mathrm{O}-\mathrm{H}), 3472(\mathrm{O}-\mathrm{H}), 2961(\mathrm{C}-\mathrm{H}), 2869(\mathrm{C}-\mathrm{H}), 1582(\mathrm{PhS})$ and $1102(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.52-7.45(2 \mathrm{H}, \mathrm{m}, \mathrm{PhS})$, $7.38-7.30(3 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 4.05(1 \mathrm{H}$, dd, $J 11.5$ and 2.0 Hz , $\left.\mathrm{OCH}_{\mathrm{eq}} \mathrm{H}_{\mathrm{ax}}\right), 4.00-3.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{\mathrm{eq}} H_{\mathrm{ax}}\right), 3.83-3.77(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CHOHCH} 2 \mathrm{CHOH}), 3.66(1 \mathrm{H}$, dd, $J 7.5$ and 3.5 Hz , $\left.\mathrm{C} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right) 3.69\left(1 \mathrm{H}\right.$, br dd, $J 10.5$ and $\left.2.0 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{eq}} \mathrm{H}_{\mathrm{ax}}\right)$, $3.54\left(1 \mathrm{H}\right.$, dd, $J 11.0$ and $\left.7.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 3.30(1 \mathrm{H}$, br s, $\mathrm{OH}), 2.83(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.47(1 \mathrm{H}$, br s, OH$), 1.95(1 \mathrm{H}$, ddd, $J 14.5,11.5$ and $\left.5.0 \mathrm{~Hz}, \mathrm{CCH}_{\mathrm{eq}} H_{\mathrm{ax}}\right), 1.83-1.78(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CHOH}\right), 1.62(1 \mathrm{H}$, ddd, $J 14.5,10.5$ and 4.0 Hz , $\left.\mathrm{CCH}_{\mathrm{eq}} H_{\mathrm{ax}}\right), 1.48\left(1 \mathrm{H}\right.$, br dd, $J 14.5$ and $\left.2.0 \mathrm{~Hz}, \mathrm{CCH}_{\mathrm{eq}} \mathrm{H}_{\mathrm{ax}}\right)$ and $1.31\left(1 \mathrm{H}\right.$, br dd, $J 14.5$ and $\left.2.0 \mathrm{~Hz}, \mathrm{CCH}_{\mathrm{eq}} \mathrm{H}_{\mathrm{ax}}\right) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 137.9^{+}(\mathrm{PhS}), 130.2^{-}(i-\mathrm{PhS}), 129.7^{+}(p-\mathrm{PhS}), 129.4^{+}$ $(\mathrm{PhS}), 72.5^{+}(\mathrm{CHOH}), 70.2^{+}(\mathrm{CHOH}), 67.4^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right)$, $64.1^{-}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 64.0^{-}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 57.2^{-}(\mathrm{CSPh}), 34.0^{-}$ $\left(\mathrm{CH}_{2} \mathrm{CHOH}\right), 30.4^{-}\left(\mathrm{CH}_{2} \mathrm{CCH}_{2}\right) ; m / z(\mathrm{EI}) 298\left(36 \%, \mathrm{M}^{+}\right), 193$ $\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{3}\right), 153\left(96, \mathrm{M}^{+}-\mathrm{PhS}-2 \times \mathrm{H}_{2} \mathrm{O}\right), 135\left(56, \mathrm{M}^{+}-\mathrm{PhS}-3\right.$ $\times \mathrm{H}_{2} \mathrm{O}$); (Found: M^{+}, 298.1238. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}$ requires M, 298.1239).

(2R,4S)-5-Methyl-5-phenylsulfanylhexane-1,2,4-triol 8

A $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of diethylmethoxyborane ${ }^{13}$ in tetrahydrofuran ($2.0 \mathrm{~cm}^{3}, 0.3 \mathrm{mmol}$) was added to a solution of β-hydroxyketone 20 ($500 \mathrm{mg}, 1.97 \mathrm{mmol}$) in tetrahydrofuranmethanol (4:1) $\left(50 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$, under an atmosphere of argon. The mixture was stirred for 5 minutes and then sodium borohydride ($94.6 \mathrm{mg}, 2.50 \mathrm{mmol}$) was added and the solution allowed to stir for 8 hours. Glacial acetic acid ($3 \mathrm{~cm}^{3}$) was added and stirring continued for a further 5 minutes. The solution was then neutralised with saturated aqueous sodium bicarbonate solution ($30 \mathrm{~cm}^{3}$) and extracted with diethyl ether $\left(3 \times 15 \mathrm{~cm}^{3}\right)$. The organic extracts were dried over anhydrous magnesium sulfate and the solvent was removed under reduced pressure to give a crude product. This product was redissolved in methanol $\left(5 \mathrm{~cm}^{3}\right)$ and stirred for 5 minutes before removing the methanol under reduced pressure. This cycle was repeated until TLC showed no spots with R_{f} (diethyl ether) >0.5. The crude product was purified by column chromatography (silica, ethyl acetate) to give anti-triol $5(54 \mathrm{mg}, 11 \%)$ as a white solid, $R_{\mathrm{f}}($ ethyl acetate) 0.13 (see above) and syn-triol $\mathbf{8}$ ($399 \mathrm{mg}, 79 \%$) as an oil; R_{f} (ethyl acetate) 0.24 ; retention time/min (isocratic HPLC 62:38 $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O} ; 0.1 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, 0.1 \% \mathrm{Et}_{3} \mathrm{~N}$; flow rate $1 \mathrm{~cm}^{3}$ $\left.\min ^{-1}\right) 6.75 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3486(\mathrm{O}-\mathrm{H}), 3057,2982,2931$, 2874 and $1422 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.55-7.46(2 \mathrm{H}, \mathrm{m}, \mathrm{PhS})$, 7.44-7.28 (3 H, m, PhS), 3.94* (1 H, s, OH), 3.93-3.83 (1 H, m, $\mathrm{CHOH}), 3.65^{*}(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.65-3.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right.$ and $\mathrm{PhSCCHOH}), 3.48\left(1 \mathrm{H}, \mathrm{dt}, J 11.3\right.$ and $\left.5.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right)$, 2.25* (1 H, t, J $\left.6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 1.67-1.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right.$ and $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{A}}\right)$ and $1.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(100.6$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $137.4^{+}(m-\mathrm{PhS}), 129.9^{-}(i-\mathrm{PhS}), 129.4^{+}(p-\mathrm{PhS})$, $128.9^{+}(o-\mathrm{PhS}), \quad 75.4^{+}(\mathrm{CHOH}), \quad 72.2^{+}(\mathrm{CHOH}), \quad 66.7^{-}$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 55.1^{-}(\mathrm{CSPh}), 32.8^{-}\left(\mathrm{CH}_{2}\right), 25.6^{+}(\mathrm{Me})$ and 21.8^{+} (Me); $m / z(+\mathrm{FAB}) 279\left(100 \%, \mathrm{MNa}^{+}\right), 257\left(3, \mathrm{MH}^{+}\right), 239$ (27), $151\left(38, \mathrm{Me}_{2} \mathrm{CSPh}^{+}\right), 129(33), 110\left(15, \mathrm{PhSH}^{+}\right)$and 77 (25); (Found: MNa^{+}, 279.1015. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{SNa}$ requires 279.1025).

(1S,3R)-[1-(Phenylsulfanyl)cyclohexyl]butane-1,3,4-triol 9

By the method described for compound 8, diethylmethoxyborane $\left(1.1 \mathrm{~cm}^{3}\right.$ of a $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in tetrahydrofuran, $1.1 \mathrm{mmol}), \beta$-hydroxyketone $21(300 \mathrm{mg}, 1.02 \mathrm{mmol})$ in tetrahydrofuran-methanol $(4: 1)\left(20 \mathrm{~cm}^{3}\right)$ and sodium borohydride ($76.5 \mathrm{mg}, 2.03 \mathrm{mmol}$) gave a crude product. Purification by column chromatography (silica, ethyl acetate) gave anti-triol $6(45 \mathrm{mg}, 15 \%)$ as an oil; $R_{\mathrm{f}}($ ethyl acetate) 0.30 and syn-triol 9 ($226 \mathrm{mg}, 75 \%$) as an oil; R_{f} (ethyl acetate) 0.22 ; retention time/ \min (isocratic HPLC $62: 38 \mathrm{H}_{2} \mathrm{O}: \mathrm{MeCN} ; 0.1 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, 0.1 \%$
$\mathrm{Et}_{3} \mathrm{~N}$; flow rate $\left.1 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right)$ 17.77; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3686$ $(\mathrm{O}-\mathrm{H}), 3599(\mathrm{O}-\mathrm{H}), 3056,2986,2937,2860,1605,1474$ and 1394; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $7.53-7.47(2 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 7.42-7.31$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$), 3.94* ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$), 3.90-3.83 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$), 3.75* ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$), 3.62 (1 H , ddd, $J 10.9,6.3$ and 3.8 Hz , $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.58-3.52(1 \mathrm{H}, \mathrm{m}, \mathrm{PhSCCHOH}), 3.49(1 \mathrm{H}, \mathrm{dt}$, $J 11.3$ and $\left.5.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 2.14^{*}(1 \mathrm{H}, \mathrm{t}, J 6.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 2.02(1 \mathrm{H}, \mathrm{qt}, J 12.8$ and 3.9 Hz$), 1.89-1.52(8 \mathrm{H}, \mathrm{m})$ and 1.45-1.14 $(3 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 137.3^{+}$, 129.7^{-} (i-PhS), $129.3^{+}, 129.0^{+}, 75.1^{+}(\mathrm{CHOH}), 72.4^{+}(\mathrm{CHOH}), 66.8^{-}$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 61.3^{-}(\mathrm{CSPh}), 32.8^{-}, 30.2^{-}, 29.2^{-}, 26.2^{-}, 21.8^{-}$and 21.7 ${ }^{-} ; m / z(+\mathrm{FAB}) 296\left(16 \%, \mathrm{M}^{+}\right), 279\left(64, \mathrm{M}^{+}-\mathrm{OH}\right), 169$ (73), 154 (100) and 109 (34); (Found: $\mathrm{M}^{+}, 296.1446 . \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 296.1446)$.

(1S,3R)-1-[4-(Phenylsulfanyl)tetrahydropyran-4-yl]butane-1,3,4-triol 10

By the method described for compound $\mathbf{8}$, diethylmethoxyborane ($2.3 \mathrm{~cm}^{3}$ of a $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in tetrahydrofuran, 2.3 mmol), β-hydroxyketone 22 ($599 \mathrm{mg}, 2.10 \mathrm{mmol}$) in tetrahydrofuran-methanol (4:1) ($40 \mathrm{~cm}^{3}$) and sodium borohydride ($159 \mathrm{mg}, 4.20 \mathrm{mmol}$) gave a crude product after 8 hours. Purification by column chromatography (silica, ethyl acetate, 4% methanol) gave the syn-triol 10 as an oil ($0.21 \mathrm{~g}, 33 \%$); R_{f} (ethyl acetate-methanol, 24:1) 0.40; [a] $]_{\mathrm{D}}-10.7$ (c. 0.6 in $\mathrm{CHCl}_{3} ; 78 \%$ ee); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3610(\mathrm{O}-\mathrm{H}), 2962(\mathrm{C}-\mathrm{H})$, $2870(\mathrm{C}-\mathrm{H})$ and $1103(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.49-7.43$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$), $7.36-7.27(3 \mathrm{H}, \mathrm{m}, \mathrm{PhS})$, $4.03(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and $\left.2.0 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{ax}} H_{\mathrm{eq}}\right), 3.96(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and 2.0 Hz , $\mathrm{OCH}_{\mathrm{ax}} H_{\text {eq }}$), 3.91-3.84 (1 H, m, CH2CHOH), $3.80-3.72(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{\mathrm{ax}} \mathrm{H}_{\text {eq }}\right), 3.83-3.74\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right.$ and CCHOH$), 3.49$ $\left(1 \mathrm{H}, \mathrm{dd}, J 11.0\right.$ and $\left.6.0 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 1.96(1 \mathrm{H}$, ddd, $J 14.0$, 12.0 and $\left.5.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CHOH}\right), 1.83(1 \mathrm{H}$, br d, $J 14.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CHOH}\right), 1.83(1 \mathrm{H}$, ddd, $J 14.0,12.0$ and 5.0 Hz , $\left.\mathrm{CCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.63\left(1 \mathrm{H}, \mathrm{dt}, J 14.0\right.$ and $\left.10.0 \mathrm{~Hz}, \mathrm{CCH}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}\right), 1.40$ $\left(1 \mathrm{H}, \mathrm{dd}, J 12.0\right.$ and $\left.1.5 \mathrm{~Hz}, \mathrm{CCH}_{\mathrm{ax}} H_{\mathrm{eq}}\right)$ and $1.23(1 \mathrm{H}, \mathrm{dd}$, $J 14.5$ and $\left.1.5 \mathrm{~Hz}, \mathrm{CCH}_{\mathrm{ax}} H_{\mathrm{eq}}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 136.5^{+}$ (PhS), $128.5^{-}(i-\mathrm{PhS}), 128.4^{+}(p-\mathrm{PhS}), 128.1^{+}(\mathrm{PhS}), 74.5^{+}$ $\left(\mathrm{CH}_{2} \mathrm{CHOH}\right), 71.5^{+}(\mathrm{CCHOH}), 65.7^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right), 62.8^{-}$ $\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right), \quad 62.5^{-}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right), \quad 56.2^{-}(\mathrm{CSPh}), \quad 28.8^{-}$ $\left(\mathrm{CH}_{2} \mathrm{CCH}_{2}\right)$ and 28.5 $\left(\mathrm{CH}_{2} \mathrm{CCH}_{2}\right) ; m / z(+\mathrm{ES}) 321(100 \%$, MNa^{+}); (Found: $\mathrm{MNa}^{+}, 321.1144 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{SNa}$ requires M, 321.1137).

(2RS,4SR)-5-Methyl-5-phenylsulfanylhexane-1,2,4-triol 5 and (2RS,4RS)-5-Methyl-5-phenylsulfanylhexane-1,2,4-triol 8

Potassium ferricyanide ($26.4 \mathrm{~g}, 80.0 \mathrm{mmol}, 3$ eq.), potassium carbonate ($11.1 \mathrm{~g}, 80.0 \mathrm{mmol}, 3 \mathrm{eq}$.), osmium(III) chloride hydrate ($59.4 \mathrm{mg}, 20 \mu \mathrm{~mol}, 0.7 \mathrm{~mol} \%$) and quinuclidine (105 $\mathrm{mg}, 944 \mu \mathrm{~mol}, 3.5 \mathrm{~mol} \%$) were placed in a round bottom flask and stirred gently. Water $\left(140 \mathrm{~cm}^{3}\right)$ and 2-methylpropan-2-ol ($140 \mathrm{~cm}^{3}$) were added, the flask was sealed and the solution stirred vigorously. Once the solids had completely dissolved the alkene $14(6.00 \mathrm{~g}, 27.0 \mathrm{mmol})$ was added in one portion. Stirring was continued until TLC or LCMS indicated complete consumption of starting material. Sodium sulfite was then added in one portion ($121 \mathrm{~g}, 960 \mathrm{mmol}$) and stirring continued for a further 30 minutes. The solution was transferred to a separating funnel, diluted with ethyl acetate ($200 \mathrm{~cm}^{3}$) and the aqueous layer separated. The aqueous layer was then extracted with ethyl acetate $\left(3 \times 150 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with water $\left(200 \mathrm{~cm}^{3}\right)$ and brine $\left(200 \mathrm{~cm}^{3}\right)$, dried over anhydrous magnesium sulfate and finally, the solvent was evaporated under reduced pressure to give a crude product. Analytical HPLC (isocratic 38:62 MeCN: $\mathrm{H}_{2} \mathrm{O} ; 0.1 \%$ $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, 0.1 \% \mathrm{Et}_{3} \mathrm{~N}$; flow rate $1 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$) indicated an anti:syn mixture of $43: 57$ (retention times: $5.66 \mathrm{~min}, 6.64 \mathrm{~min}$, respectively). Purification by column chromatography (silica, ethyl acetate) gave syn-triol $7(3.53 \mathrm{~g}, 51 \%)$ as an oil; $R_{\mathrm{f}}(\mathrm{ethyl}$
acetate) 0.24 , spectroscopically identical to the enantiomerically enriched sample and anti-triol $5(2.98 \mathrm{~g}, 43 \%)$ as a white amorphous solid. Crystallisation from chloroform gave antitriol $\mathbf{5}$ as needles, mp $108-109^{\circ} \mathrm{C}$ (from chloroform); R_{f} (ethyl acetate) 0.13 , spectroscopically identical to the enantiomerically enriched sample.

(2RS,4SR)-[1-(Phenylsulfanyl)cyclohexyl]butane-1,2,4-triol 6 and (2RS,4RS)-[1-(Phenylsulfanyl)cyclohexyl]butane-1,2,4-triol 9

By the method described for triols $\mathbf{5}$ and $\mathbf{8}$, potassium ferricyanide ($1.86 \mathrm{~g}, 5.66 \mathrm{mmol}, 3 \mathrm{eq}$.), potassium carbonate (0.782 g , $5.66 \mathrm{mmol}, 3$ eq.), osmium(III) chloride hydrate ($4.2 \mathrm{mg}, 14$ $\mu \mathrm{mol}, 0.7 \mathrm{~mol} \%$), quinuclidine ($7.4 \mathrm{mg}, 67 \mu \mathrm{~mol}, 3.5 \mathrm{~mol} \%$) and alkene 15 ($500 \mathrm{mg}, 1.91 \mathrm{mmol}$) in 2-methylpropan-2-ol ($10 \mathrm{~cm}^{3}$) and water $\left(10 \mathrm{~cm}^{3}\right)$ gave a crude product. Analytical HPLC (isocratic 38:62 $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O} ; 0.1 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, 0.1 \% \mathrm{Et}_{3} \mathrm{~N}$; flow rate $1 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$) indicated an syn:anti mixture of $58: 42$ (retention times: $4.20 \mathrm{~min}, 4.74 \mathrm{~min}$, respectively). Purification by column chromatography (silica, ethyl acetate) gave anti-triol 6 ($215 \mathrm{mg}, 38 \%$) as a white amorphous solid; R_{f} (ethyl acetate) 0.32 , spectroscopically identical to the enantiomerically enriched sample and syn-triol 9 ($288 \mathrm{mg}, 51 \%$) as an oil; R_{f} (ethyl acetate) 0.22 , spectroscopically identical to the enantiomerically enriched sample.

(3RS)-2-Methyl-2-phenylsulfanylhex-5-en-3-ol 14

A solution of allylmagnesium bromide in diethyl ether (1.0 mol $\mathrm{dm}^{-3}, 56 \mathrm{~cm}^{3}, 56 \mathrm{mmol}$) was added to a stirred solution of aldehyde $\mathbf{1 1}(9.92 \mathrm{~g}, 55 \mathrm{mmol})$ in diethyl ether $\left(100 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ under an atmosphere of argon. After the addition was complete the reaction was allowed to warm to room temperature and stirring continued for 2 hours. Saturated aqueous ammonium chloride solution ($80 \mathrm{~cm}^{3}$) was added and the product was extracted with diethyl ether $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with water $\left(70 \mathrm{~cm}^{3}\right)$ and saturated brine $\left(70 \mathrm{~cm}^{3}\right)$ and dried over anhydrous magnesium sulfate. The solvent was removed under reduced pressure to give a crude product which was purified by column chromatography [silica, light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-diethyl ether, 9:1] to give the alcohol $14\left(12.1 \mathrm{~g}, 99 \%\right.$) as a pale yellow oil; R_{f} light petroleum (bp 40$60^{\circ} \mathrm{C}$)-diethyl ether, 9:1] 0.17; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3478(\mathrm{O}-\mathrm{H})$, 3078, 2934, 2856, $1640(\mathrm{C}=\mathrm{C})$ and $1583(\mathrm{PhS}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.55-7.51(2 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 7.39-7.30(3 \mathrm{H}, \mathrm{m}, \mathrm{PhS})$, 5.90-5.81 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.16-5.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $3.38(1 \mathrm{H}, \mathrm{td}, J 10.0$ and $2.4 \mathrm{~Hz}, \mathrm{CHOH}), 2.83^{*}(1 \mathrm{H}, \mathrm{dd}, J 2.2$ and $1.3 \mathrm{~Hz}, \mathrm{OH}), 2.35-2.23\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.21-$ $2.14\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{A}}\right)$ and 1.23 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 137.5^{+}, 136.1^{+}$, 130.4^{-} (i-PhS), $129.2^{+}, 128.8^{+}, 117.0^{-}\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 74.6^{+}(\mathrm{COH}), 55.0^{-}$ (CSPh), 35.5- $\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $25.6^{+}\left(\mathrm{Me}_{\mathrm{A}}\right)$ and $22.5^{+}\left(\mathrm{Me}_{\mathrm{B}}\right)$; $m / z(\mathrm{EI}) 222\left(10 \%, \mathrm{M}^{+}\right), 181\left(9, \mathrm{Me}_{2} \mathrm{C}(\mathrm{SPh}) \mathrm{CHOH}^{+}\right), 151(100$, $\mathrm{Me}_{2} \mathrm{CSPh}^{+}$), 110 ($91, \mathrm{PhSH}^{+}$), 95 (26) and 71 (29); (Found: M^{+}, 222.1078. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{OS}$ requires M, 222.1078).

(1RS)-1-[1-(Phenylsulfanyl)cyclohexyl]but-3-en-1-ol 15

By the method described for compound 14, a solution of allylmagnesium bromide in diethyl ether ($1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 40 \mathrm{~cm}^{3}$, $40 \mathrm{mmol})$ and aldehyde $12(8.80 \mathrm{~g}, 40 \mathrm{mmol})$ in diethyl ether $\left(150 \mathrm{~cm}^{3}\right)$ gave a crude product which was purified by column chromatography [silica, light petroleum (bp 40-60 ${ }^{\circ} \mathrm{C}$)-diethyl ether, $9: 1$] to give the alcohol $15(10.06 \mathrm{~g}, 96 \%)$ as a pale yellow oil; R_{f} light petroleum (bp $40-60^{\circ} \mathrm{C}$)-diethyl ether, 9:1] 0.17 ; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3495(\mathrm{O}-\mathrm{H}), 3074,2971,2931,2870,1641$ (C=C) and $1582(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.55-7.50(2 \mathrm{H}, \mathrm{m}$, PhS), 7.39-7.29 ($3 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$), 5.89 (1 H , ddt, $J 17.1,10.1$ and $\left.6.9 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.11(1 \mathrm{H}, \mathrm{dd}, J 17.3$ and $1.5 \mathrm{~Hz}, \mathrm{CH}=$ $\left.\mathrm{C} H_{\text {trans }} \mathrm{H}_{\text {cis }}\right), 5.08\left(1 \mathrm{H}, \mathrm{d}, J 10.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{\text {trans }} H_{\text {cis }}\right), 3.35(1 \mathrm{H}$,
d, $J 10.0 \mathrm{~Hz}, \mathrm{CHOH}), 2.89^{*}(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.47(1 \mathrm{H}, \mathrm{dd}, J 14.1$ and $\left.5.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.25-2.17\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right) 1.97(1 \mathrm{H}, \mathrm{qt}$, $J 12.9$ and 3.8 Hz$), 1.85(1 \mathrm{H}, \mathrm{qt}, J 12.2$ and 3.4 Hz$), 1.79-1.48$ $\left(6 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{CH}_{2}\right), 1.44-1.36(1 \mathrm{H}, \mathrm{m})$ and $1.23(1 \mathrm{H}, \mathrm{qt}, J 12.5$ and 3.8 Hz$)$; $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 137.3^{+}, 136.5^{+}, 130.2^{-} (i-PhS), $129.0^{+}, 128.9^{+}, 116.8^{-}\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 74.3^{+}(\mathrm{COH}), 60.9^{-}$ (CSPh), 35.5-, 30.5-, 29.9 ${ }^{-}$, 26.2 ${ }^{-}$and 21.8^{-}; m/z (EI) 262 (3%, M^{+}), 203 (3), 191 (66, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}^{+}$), 135 (27), 110 (73, PhSH^{+}) and 83 (100) and 91 (98); (Found: M^{+}, 262.1387. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{OS}$ requires $M, 262.1391$).

(1RS)-1-[4-(Phenylsulfany)tetrahydropyran-4-yl]but-3-en-1-ol 16

By the method described for compound 14, allylmagnesium bromide in diethyl ether ($1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 35 \mathrm{~cm}^{3}, 0.035 \mathrm{~mol}$, 1.2 eq.) and aldehyde $\mathbf{1 3}(6.39 \mathrm{~g}, 0.029 \mathrm{~mol}$) in dry tetrahydrofuran $\left(120 \mathrm{~cm}^{3}\right)$ gave a crude product which was recrystallised from chloroform to give the alcohol $\mathbf{1 6}$ as prisms ($5.15 \mathrm{~g}, 68 \%$), $\mathrm{mp} 84-86^{\circ} \mathrm{C}$ (chloroform); R_{f} light petroleum (bp $40-60^{\circ} \mathrm{C}$)diethyl ether, 1:1] $0.21 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3579(\mathrm{O}-\mathrm{H}), 3070$ $(\mathrm{C}-\mathrm{H}), 3040(\mathrm{C}-\mathrm{H}), 2962(\mathrm{C}-\mathrm{H}), 2867(\mathrm{C}-\mathrm{H}), 1640(\mathrm{C}=\mathrm{C})$ and $1104(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.50-7.48(2 \mathrm{H}, \mathrm{m}, \mathrm{PhS})$, $7.36-7.25(3 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 5.87(1 \mathrm{H}$, dddd, $J 16.0,10.0,7.0$ and $7.0 \mathrm{~Hz}, H \mathrm{C}=\mathrm{CH}_{2}$), $5.16-5.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{CH}_{2}\right), 4.04-3.98$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 3.83-3.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 3.39(1 \mathrm{H}$, dt, $J 10.0$ and $3.0 \mathrm{~Hz}, \mathrm{CHOH}$), $2.74(1 \mathrm{H}, \mathrm{d}, J 3.0 \mathrm{~Hz}, \mathrm{OH}), 2.55$ $\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J 14.0$ and $\left.6.0 \mathrm{~Hz}, \mathrm{CHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.26-2.17(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CHCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.02(1 \mathrm{H}$, ddd, $J 14.5,11.5$ and 5.0 Hz , $\left.\mathrm{CCH}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}\right), 1.86\left(1 \mathrm{H}\right.$, ddd, $J 14.5,11.5$ and $\left.5.0 \mathrm{~Hz}, \mathrm{CCH}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}\right)$, $1.48\left(1 \mathrm{H}, \mathrm{dd}, 14.5\right.$ and $\left.2.0 \mathrm{~Hz}, \mathrm{CCH}_{\mathrm{ax}} H_{\mathrm{eq}}\right)$ and $1.34(1 \mathrm{H}$, dd, $J 14.5$ and $\left.2.0 \mathrm{~Hz}, \mathrm{CCH}_{\mathrm{ax}} H_{\mathrm{eq}}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 137.9^{+}$ $(\mathrm{PhS}), 136.4^{+}\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 130.1^{-}(i-\mathrm{PhS}), 129.7^{+}(p-\mathrm{PhS})$, $129.4^{+}(\mathrm{PhS}), 117.7^{-}\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 75.0^{+}(\mathrm{CHOH}), 64.2^{-}$ $\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right), \quad 64.0^{-} \quad\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right), \quad 57.8^{-} \quad(\mathrm{CSPh}), \quad 35.9^{-}$ $\left(\mathrm{CH}_{2} \mathrm{CHOH}\right), 30.6^{-}\left(\mathrm{CH}_{2} \mathrm{CCH}_{2}\right)$ and $30.3^{-}\left(\mathrm{CH}_{2} \mathrm{CCH}_{2}\right)$; m / z (EI) $264\left(46 \%, \mathrm{M}^{+}\right)$, 193 ($100, \mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}$), 137 (47, $\left.\mathrm{M}^{+}-\mathrm{PhS}-\mathrm{H}_{2} \mathrm{O}\right), 109\left(45, \mathrm{PhS}^{+}\right)$and $83\left(39, \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}^{+}\right)$; (Found: $\mathrm{M}^{+}, 264.1194 . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{M}, 264.1184$); (Found: C, 68.19; H, 7.58. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}$ requires C, 68.15; H, 7.63%).

2-Methyl-2-phenylsulfanylhex-5-en-3-one 17

Alcohol $14(8.00 \mathrm{~g}, 36.0 \mathrm{mmol})$ was added in one portion, under argon at $0{ }^{\circ} \mathrm{C}$ to a stirred solution of pyridinium chlorochromate (PCC) ${ }^{10}$ ($\left.10.1 \mathrm{~g}, 46.8 \mathrm{mmol}\right)$ in dichloromethane $\left(150 \mathrm{~cm}^{3}\right)$. The solution was allowed to warm to room temperature and stirred until the reaction was judged complete by TLC. Dry diethyl ether $\left(50 \mathrm{~cm}^{3}\right)$ was added and the supernatant liquor decanted from a black gum. The insoluble residues were washed 5 times with ether $\left(50 \mathrm{~cm}^{3}\right)$ and the combined ethereal extracts were filtered through a plug of florisil, which was washed with more diethyl ether. The solvent was removed under reduced pressure to give a crude product as a pale yellow-green oil. Purification by column chromatography [silica, light petroleum (bp $40-60^{\circ} \mathrm{C}$)-diethyl ether, 9:1] gave the ketone $17(6.66 \mathrm{~g}$, 84%) as an oil; R_{f} light petroleum (bp $40-60^{\circ} \mathrm{C}$)-diethyl ether, 9:1] 0.35; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3080,2972$, 2931, 1701 (C=O), $1642(\mathrm{C}=\mathrm{C})$ and $1584(\mathrm{PhS}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.38-7.25$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$), $6.05-5.92\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.23-5.14(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 3.59\left(2 \mathrm{H}, \mathrm{dt}, J 6.8\right.$ and $\left.1.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right)$ and 1.40 $(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 205.7^{-}(\mathrm{C}=\mathrm{O}), 136.2^{+}$, $131.8^{+}, 131.0^{-}(i-\mathrm{PhS}), 129.3^{+}, 129.0^{+}, 118.2^{-}\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 56.4^{-}$ $(\mathrm{CSPh}), 41.0^{-}\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$ and $24.3^{+}(2 \times \mathrm{Me}) ; m / z(\mathrm{EI}) 220(8 \%$, M^{+}), $151\left(100, \mathrm{Me}_{2} \mathrm{CSPh}^{+}\right), 110\left(14, \mathrm{PhSH}^{+}\right), 109\left(14, \mathrm{PhS}^{+}\right)$, 84 (35) and 73 (17); (Found: M^{+}, 220.0923. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{OS}$ requires M, 220.0922).

1-[1-(Phenylsulfanyl)cyclohexyl]but-3-en-1-one 18

By the method described for compound 17, alcohol $\mathbf{1 5}$ (10.0 g,
$38 \mathrm{mmol})$ and pyridinium chlorochromate ($10.8 \mathrm{~g}, 50 \mathrm{mmol}$) in dichloromethane $\left(100 \mathrm{~cm}^{3}\right)$ gave a crude product as a pale green oil. Purification by column chromatography [silica, light petroleum (bp $40-60^{\circ} \mathrm{C}$)-diethyl ether, 9:1] gave the ketone $\mathbf{1 8}(8.04 \mathrm{~g}$, 81%) as an oil; R_{f} light petroleum ($\mathrm{bp} 40-60^{\circ} \mathrm{C}$)-diethyl ether, 9:1] 0.39; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3052,2838,2858,1697(\mathrm{C}=\mathrm{O})$ and $1641(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.34-7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 6.03$ (1 H , ddt, $J 17.1,10.3$ and $\left.6.9 \mathrm{~Hz}, \mathrm{C} H=\mathrm{CH}_{2}\right), 5.21(1 \mathrm{H}, \mathrm{dd}$, $J 10.1$ and $1.4 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{\text {trans }} H_{\text {cis }}$, $5.19(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and $\left.1.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C} H_{\text {trans }} \mathrm{H}_{\text {cis }}\right), 3.57\left(2 \mathrm{H}, \mathrm{dt}, J 6.8\right.$ and $1.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}=$ O), 1.99-1.91 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.82-1.64 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}$), $1.49-$ $1.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ and $1.38-1.26\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}$; CDCl_{3}) $204.4^{-}(\mathrm{C}=\mathrm{O}), 136.5^{+}, 132.0^{+}, 130.0^{-}(i-\mathrm{PhS}), 129.3^{+}$, $128.8^{+}, 118.1^{-}\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 61.2^{-}(\mathrm{CSPh}), 41.0^{-}, 32.5^{-}, 25.5^{-}$ and $23.1^{-} ; m / z(E I) 260\left(4 \%, \mathrm{M}^{+}\right), 191\left(100, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}^{+}\right), 123$ (16), 110 ($9, \mathrm{PhSH}^{+}$) and 81 (44); (Found: $\mathrm{M}^{+}, 260.1242$. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{OS}$ requires $M, 260.1235$).

1-[4-(Phenylsulfanyl)tetrahydropyran-4-yl]but-3-en-1-one 19

By the method described for compound 17, the alcohol 16 $(2.21 \mathrm{~g}, 8.4 \mathrm{mmol})$ and pyridinium chlorochromate $(2.71 \mathrm{~g}$, 12.5 mmol) in dichloromethane ($25 \mathrm{~cm}^{3}$) gave a crude product. Purification by column chromatography [silica, light petroleum (bp $40-60^{\circ} \mathrm{C}$)-diethyl ether, 9:1] gave the ketone $\mathbf{1 9}$ as an oil $\left(1.709 \mathrm{~g}, 78 \%\right.$); R_{f} light petroleum (bp $40-60^{\circ} \mathrm{C}$)-diethyl ether, 3:1] $0.23 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3073(\mathrm{C}-\mathrm{H}), 3041(\mathrm{C}-\mathrm{H}), 2931$ (C-H), 2867 (C-H), 1699 (C=O), 1641 (C=C), 1576 (PhS) and $1104(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.34-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 6.00$ $\left(1 \mathrm{H}\right.$, ddt, $J 17.0,10.0$ and $\left.7.0 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 5.21(1 \mathrm{H}, \mathrm{dd}$, $J 10.0$ and $\left.1.5 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 5.19(1 \mathrm{H}, \mathrm{dd}, J 17.0$ and 1.5 Hz , $\left.\mathrm{C}=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.94\left(2 \mathrm{H}\right.$, ddd, $J 12.0,7.5$ and $\left.3.5 \mathrm{~Hz}, \mathrm{OCH} H_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}\right)$, 3.58-3.52 $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{\mathrm{ax}} H_{\mathrm{eq}}\right.$ and $\left.\mathrm{CHCH}_{2}\right), 2.01(2 \mathrm{H}$, ddd, $J 14.0,7.5$ and $3.5 \mathrm{~Hz}, \mathrm{CC} H_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}$) and $1.84(2 \mathrm{H}$, ddd, $J 14.0$, 7.0 and $\left.3.5 \mathrm{~Hz}, \mathrm{CCH}_{\mathrm{ax}} H_{\mathrm{eq}}\right) ; \delta_{\mathrm{c}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 203.9^{-}$ $(\mathrm{C}=\mathrm{O}), 136.9^{+}(\mathrm{PhS}), 136.9^{-}(i-\mathrm{PhS}), 131.8^{+}\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 130.0^{+}$ (p - PhS), $129.4^{+}(\mathrm{PhS}), 119.0^{-}\left(\mathrm{HC}=\mathrm{CH}_{2}\right), 64.7^{-}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right)$, $58.8^{-}(\mathrm{CSPh}), 41.4^{-}\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$, and $32.3^{-}\left(\mathrm{CH}_{2} \mathrm{CCH}_{2}\right)$; m / z (EI) $262.1\left(18 \%, \mathrm{M}^{+}\right), 193\left(100, \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{OSPh}^{+}\right)$and 109 (12, PhS^{+}); (Found: M^{+}, 262.1019. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$ requires M, 262.1027).

(5R)-5,6-Dihydroxy-2-methyl-2-phenylsulfanylhexan-3-one 20

Alkene 17 ($3.10 \mathrm{~g}, 14.1 \mathrm{mmol}$) was added to a vigorously stirred solution of AD-mix- β (19.7 g) in a mixture of 2-methylpropan2 -ol $\left(70 \mathrm{~cm}^{3}\right)$ and water $\left(70 \mathrm{~cm}^{3}\right)$. The reaction was stirred at room temperature \dagger until judged complete by TLC or LCMS. Sodium sulfite ($7.50 \mathrm{~g}, 59.3 \mathrm{mmol}, 12 \mathrm{eq}$.) was then added and stirring continued for 30 minutes. The mixture was transferred to a separating funnel and ethyl acetate $\left(50 \mathrm{~cm}^{3}\right)$ was added. The solution was extracted a further three times with ethyl acetate ($25 \mathrm{~cm}^{3}$). The combined organic extracts were washed with water $\left(25 \mathrm{~cm}^{3}\right)$, saturated brine ($25 \mathrm{~cm}^{3}$) and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give a crude product which was purified by column chromatography (silica, ethyl acetate) to give the diol $20(3.57 \mathrm{~g}, 77 \%)$ as an oil; R_{f} (ethyl acetate) 0.42 ; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3591(\mathrm{br}, \mathrm{O}-\mathrm{H}), 3057,2972,2931,2876$, 1691 (C=O), 1541, 1474, 1439, 1385, 1367, 1102, 1051, 1026 and 909; retention time/min (Chiralpak AD column; hexaneethanol, 9:1) 15.5 (63.6%) and 17.3 (36.4); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 7.39-7.27 ($5 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$), 4.23-4.12 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$), 3.71 (1 H , ddd, J 11.1, 6.0 and $\left.3.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.56(1 \mathrm{H}$, dt, $J 11.3$ and $\left.5.6 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 3.39^{*}(1 \mathrm{H}, \mathrm{d}, J 3.1 \mathrm{~Hz}, \mathrm{CHOH}), 3.04$ $\left(1 \mathrm{H}, \mathrm{dd}, J 17.7\right.$ and $\left.3.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{C}=\mathrm{O}\right), 2.95(1 \mathrm{H}, \mathrm{dd}, J 17.7$ and $8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{C}=\mathrm{O}$), $2.07^{*}\left(1 \mathrm{H}\right.$, br t, $\left.J 6.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right)$, $1.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{A}}\right)$ and $1.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}$;

[^0]Table 5 Effect of varying ligand ${ }^{8,11}$ and temperature on the enantiomeric excess of the AD reaction of alkene 17

Ligand	Temperature	Peaks	Enantiomeric excess
CLB 8			
${\text { PHAL (AD-mix- } \beta)^{11 b}}{ }^{\circ} 5^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$15.4(55.1 \%)$ and $17.2(44.9)$	10.2%
PHAL $^{\circ}$	$25^{\circ} \mathrm{C}$	$15.8(63.6 \%)$ and $17.7(36.4)$	27.2%
PHN $^{11 c}$	$25^{\circ} \mathrm{C}$	$15.5(67.2 \%)$ and $17.3(32.8)$	34.4%
PYR $^{11 a}$	$25^{\circ} \mathrm{C}$	$15.5(61.3 \%)$ and $17.3(38.7)$	22.6%
PYR	$10^{\circ} \mathrm{C}$	$15.7(80.3 \%)$ and $17.6(19.7)$	60.6%
PYR	$0{ }^{\circ} \mathrm{C}$	$16.4(83.9 \%)$ and $18.6(16.1)$	67.8%

Table 6 Comparison of enantiomeric excess in the AD reaction of alkene 18 using the PYR ligand and the standard PHAL ligand

Ligand	Temperature	Peaks	Enantiomeric Excess
PHAL (AD-mix- β)	$25^{\circ} \mathrm{C}$	$13.8(64.4 \%)$ and $15.0(35.6)$	29.0%
PYR	$0{ }^{\circ} \mathrm{C}$	$14.4(91.8 \%)$ and $15.8(8.2)$	83.6%

$\left.\mathrm{CDCl}_{3}\right) 208.9^{-}(\mathrm{C}=\mathrm{O}), 136.3^{+}(\mathrm{m}-\mathrm{PhS}), 130.7^{-}(i-\mathrm{PhS}), 129.5^{+}$ ($p-\mathrm{PhS}$), $128.9^{+}(o-\mathrm{PhS}), 68.8^{+}(\mathrm{CHOH}), 66.0^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right), 56.2^{-}$ (CSPh), 38.8 $\left(\mathrm{CH}_{2}\right), 24.3^{+}(\mathrm{Me})$ and $24.2^{+}(\mathrm{Me}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 254$ $\left(5 \%, \mathrm{M}^{+}\right), 151\left(82, \mathrm{Me}_{2} \mathrm{CSPh}^{+}\right)$and $109\left(100, \mathrm{PhS}^{+}\right)$; (Found: $\mathrm{M}^{+}, 254.0971 . \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 254.0977$).

(3R)-3,4-Dihydroxy-1-[1-(phenylsulfanyl)cyclohexyl]butan-1-one 21

By the method described for compound 20, alkene 18 (3.00 g , $11.5 \mathrm{mmol})$ and AD-mix- $\beta(16.5 \mathrm{~g})$ in 2-methylpropan-2-ol ($75 \mathrm{~cm}^{3}$) and water ($75 \mathrm{~cm}^{3}$) gave a crude product which was purified by column chromatography (silica, ethyl acetate) to give the diol $21(3.07 \mathrm{~g}, 91 \%)$ as a pale yellow oil; R_{f} (ethyl acetate) $0.42 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3584(\mathrm{br}, \mathrm{O}-\mathrm{H}), 3056,3048$, 3987, 2938, 2859, 1685 (C=O), 1621, 1586, 1541, 1474, 1382, $1102,1069,1055,1025$ and $909 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.38-7.26$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$), $4.20(1 \mathrm{H}$, ddq, $J 9.0,6.2$ and $3.1 \mathrm{~Hz}, \mathrm{CHOH}$), $3.71\left(1 \mathrm{H}\right.$, ddd, $J 11.1,6.0$ and $\left.3.6 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.54(1 \mathrm{H}$, $\mathrm{dt}, J 11.4$ and $\left.5.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 3.53^{*}(1 \mathrm{H}, \mathrm{d}, J 2.8 \mathrm{~Hz}$, $\mathrm{CHOH}), 3.03\left(1 \mathrm{H}\right.$, dd, $J 17.7$ and $\left.2.9 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{C}=\mathrm{O}\right), 2.89$ $\left(1 \mathrm{H}, \mathrm{dd}, J 17.7\right.$ and $\left.9.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{C}=\mathrm{O}\right), 2.13^{*}(1 \mathrm{H}$, br t, $J 5.3$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{OH}\right)$ and $2.04-1.23(10 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $207.8^{-}(\mathrm{C}=\mathrm{O}), 136.5^{+}, 129.7^{-}(i-\mathrm{PhS}), 129.6^{+}, 128.9^{+}, 68.8^{+}$ $(\mathrm{CHOH}), 66.0^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right), 60.9^{-}(\mathrm{CSPh}), 38.7^{-}\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$, $32.6^{-}, 32.4^{-}, 25.4^{-}, 23.2^{-}$and $23.0^{-} ; m / z(E I) 294\left(4 \%, \mathrm{M}^{+}\right), 191$ (100, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}^{+}$), 149 (5), 123 (15) and 81 (46); (Found: M^{+}, 294.1287. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 294.1290$).

(3S)-3,4-Dihydroxy-1-[4-(phenylsulfanyl)tetrahydropyran-4-yl]butan-1-one ent-22

By the method described for compound 20, alkene 19 (50 mg, $0.19 \mathrm{mmol})$ and AD-mix- $\alpha(283 \mathrm{mg}$) in 2-methylpropan-2-ol $\left(1.5 \mathrm{~cm}^{3}\right)$ and water $\left(1.5 \mathrm{~cm}^{3}\right)$ gave a crude product after 24 hours which was purified by column chromatography (silica, ethyl acetate) to give the diol ent-22 ($35 \mathrm{mg}, 63 \%$) as a yellow oil; R_{f} (ethyl acetate) 0.38 ; retention time $/ \mathrm{min}$ (Chiralpak AD column; hexane:ethanol, $9: 1$, flow rate $\left.1 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right) 33.4$ (37%) and 36.3 (63); $[a]_{\mathrm{D}}-0.5$ (c. 0.88 in $\mathrm{CHCl}_{3} ; 26 \%$ ee), spectroscopically identical to 22.

(5R)-5,6-Dihydroxy-2-methyl-2-phenylsulfanylhexan-3-one 20

The alkene 17 ($42.0 \mathrm{mg}, 200 \mu \mathrm{~mol}$) was added to a stirred solution of osmium tetroxide ($2 \% \mathrm{w} / \mathrm{v}$ solution in water, $25 \mu \mathrm{l}$, $2 \mu \mathrm{~mol}, 1 \mathrm{~mol}^{\%} \%$), ligand ($10 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$; see Table 5), potassium carbonate ($83 \mathrm{mg}, 600 \mu \mathrm{~mol}$) and potassium ferricyanide $(198 \mathrm{mg}, 600 \mu \mathrm{~mol})$ dissolved in a mixture of water $\left(2 \mathrm{~cm}^{3}\right)$ and 2-methylpropan-2-ol $\left(2 \mathrm{~cm}^{3}\right)$. The reaction mixture was excluded from light and stirred for 36 hours at the appropriate temperature $\left(0-25^{\circ} \mathrm{C}\right)$. Sodium sulfite $(250 \mathrm{mg}, 1.98 \mathrm{mmol})$ was added and stirring continued for 30 minutes. The organic layer was separated and the aqueous layer was washed with ethyl
acetate $\left(4 \times 50 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with water $\left(50 \mathrm{~cm}^{3}\right)$, then brine $\left(50 \mathrm{~cm}^{3}\right)$, and finally dried over sodium sulfate. The solvent was removed under reduced pressure to give the crude diol $\mathbf{2 0}$ which was analysed by Chiral HPLC (Chiralpak AD column; eluting with hexaneethanol, 9:1; flow rate $1 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$).

(3R)-3,4-Dihydroxy-1-[1-(phenylsulfanyl)cyclohexyl]butan-1-one 21

By the previous method described for compound 20, alkene $\mathbf{1 8}$ ($52.0 \mathrm{mg}, 0.20 \mathrm{mmol}$), osmium tetroxide $(2 \% \mathrm{w} / \mathrm{v}$ solution in water, $25 \mu \mathrm{l}, 2 \mu \mathrm{~mol}, 1 \mathrm{~mol} \%$), ligand ($10 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$), potassium ferricyanide ($198 \mathrm{mg}, 0.6 \mathrm{mmol}$) and potassium carbonate $(83.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in a mixture of 2-methylpropan-2-ol $\left(2 \mathrm{~cm}^{3}\right)$ and water $\left(2 \mathrm{~cm}^{3}\right)$ gave the crude diol 21 which was analysed by Chiral HPLC (Chiralpak AD column; hexaneethanol, 9:1) (Table 6).

(3R)-3,4-Dihydroxy-1-[4-(phenylsulfanyl)tetrahydropyran-4-yl]butan-1-one 22

By the previous method described for compound 20, alkene 19 $(500 \mathrm{mg}, 1.9 \mathrm{mmol})$, osmium tetroxide ($2 \% \mathrm{w} / \mathrm{v}$ solution in water, $240 \mu \mathrm{l}, 19 \mu \mathrm{~mol}, 1 \mathrm{~mol} \%$), (DHQD) ${ }_{2}$ PYR (84 mg , $95 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$), potassium carbonate ($790 \mathrm{mg}, 5.7 \mathrm{mmol}$) and potassium ferricyanide $(1.88 \mathrm{~g}, 5.7 \mathrm{mmol})$ in a mixture of water $\left(20 \mathrm{~cm}^{3}\right)$ and 2-methylpropan-2-ol $\left(20 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ gave a crude product. Purification by column chromatography (silica, ethyl acetate) gave the diol 22 as a viscous oil ($410 \mathrm{mg}, 73 \%$); R_{f} (ethyl acetate) 0.38 ; retention time $/ \mathrm{min}$ (Chiralpak AD column; hexane-ethanol, $9: 1$, flow rate $\left.1 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right) 34.3(89 \%)$ and 37.4 (11); $[\alpha]_{\mathrm{D}}+13.0$ (c. 1.23 in $\mathrm{CHCl}_{3} ; 78 \%$ ee); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3593(\mathrm{O}-\mathrm{H}), 2967(\mathrm{O}-\mathrm{H}), 2868(\mathrm{C}-\mathrm{H}), 2868$ $(\mathrm{C}-\mathrm{H}), 2868(\mathrm{C}-\mathrm{H}), 1691(\mathrm{C}=\mathrm{O})$ and $1104(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.36-7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 4.18-4.26(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH})$, 4.20-3.91 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 3.71(2 \mathrm{H}, \mathrm{dd}, J 11.5$ and 3.5 Hz , $\left.\mathrm{CH} \mathrm{H}_{2} \mathrm{OH}\right), 3.58-3.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 2.94(1 \mathrm{H}, \mathrm{dd}, J 17.5$ and $\left.7.0 \mathrm{~Hz}, \mathrm{O}=\mathrm{CC} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.93(1 \mathrm{H}$, dd, $J 17.5$ and 5.0 Hz , $\left.\mathrm{O}=\mathrm{CCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.00-1.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CCH}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}\right) 1.83(1 \mathrm{H}$, ddd, $J 13.0,5.0$ and $\left.3.5 \mathrm{~Hz}, \mathrm{CCH}_{\mathrm{ax}} H_{\mathrm{eq}}\right)$ and $1.79(1 \mathrm{H}$, ddd, $J 12.5$, 5.0 and $\left.3.0 \mathrm{~Hz}, \mathrm{CCH}_{\mathrm{ax}} H_{\mathrm{eq}}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 204.6^{-}$ $(\mathrm{C}=\mathrm{O}), 134.6^{+}(\mathrm{PhS}), 127.9^{+}(p-\mathrm{PhS}), 127.2^{+}(\mathrm{PhS}), 127.1^{-}$ (i - PhS) $, 66.8^{+}\left(\mathrm{CH}_{2} \mathrm{CHOH}\right), 64.1^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right), 62.3^{+}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right)$, $62.1^{+}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 56.3^{-}(\mathrm{CSPh}), 37.1^{+}\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 20.9^{-}$ $\left(\mathrm{CH}_{2} \mathrm{CCH}_{2}\right)$ and $29.7^{-}\left(\mathrm{CH}_{2} \mathrm{CCH}_{2}\right) ; m / z(\mathrm{EI}) 296\left(38 \%, \mathrm{M}^{+}\right)$, $193\left(100, \mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{3}\right)$ and $109\left(22, \mathrm{PhS}^{+}\right)$; (Found: M^{+}, 296.1093. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}$ requires M, 296.1082).

(2RS,4SR)-(4-Phenylsulfanyl-1-oxaspiro[4.5]dec-2-yl)methanol 23

By the method described for compound 3, toluene-p-sulfonic acid $(4.8 \mathrm{mg}, 25 \mu \mathrm{~mol})$ and a solution of anti-triol $6(70 \mathrm{mg}$,
0.240 mmol) in dichloromethane ($2 \mathrm{~cm}^{3}$) gave the ${ }^{2,4}$ antitetrahydrofuran 23 ($59 \mathrm{mg}, 90 \%$) after 48 hours as an oil; R_{f} light petroleum (bp $40-60{ }^{\circ} \mathrm{C}$)-diethyl ether, 1:1] 0.18 ; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3591(\mathrm{O}-\mathrm{H}), 3056,2986,2938,2861,1584$, 1480, 1448, 1439, 1146, 1090, 1039, 1026, 964 and 909; $\delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.44-7.36(3 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 7.33-7.16(2 \mathrm{H}, \mathrm{m}$, PhS), $4.20(1 \mathrm{H}$, dddd, $J 7.9,6.0,4.7$ and $3.2 \mathrm{~Hz}, \mathrm{CH}-\mathrm{O}), 3.71$ $\left(1 \mathrm{H}\right.$, ddd, $J 11.5,5.6$ and $\left.3.2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.45(1 \mathrm{H}$, ddd, 11.7, 7.2 and $\left.4.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 3.36(1 \mathrm{H}, \mathrm{t}, J 7.9 \mathrm{~Hz}$, CHSPh $), 2.32\left(1 \mathrm{H}\right.$, ddd, $J 13.0,8.0$ and $\left.6.0 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.10$ $\left(1 \mathrm{H}, \mathrm{dt}, J 13.0\right.$ and $\left.7.9 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.90^{*}(1 \mathrm{H}, \mathrm{dd}, J 7.2$ and $5.7 \mathrm{~Hz}, \mathrm{OH})$ and $1.76-1.14(10 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $135.9^{-}(i-\mathrm{PhS}), 131.0^{+}, 129.0^{+}, 126.7^{+}$, 84.5^{-}(C-O), 75.6^{+} (CH-O), 65.2- $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 55.2^{+}$(CHSPh), 37.0 0^{-}, $35.5^{-}, 30.9^{-}$, $25.6^{-}, 23.3^{-}$and $22.2^{-} ; m / z$ (EI) $278\left(18 \%, \mathrm{M}^{+}\right), 180\left(56, \mathrm{M}^{+}-\right.$ $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$), $149\left(100, \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{SPh}^{+}\right)$and $110\left(15, \mathrm{PhSH}^{+}\right)$; (Found: $\mathrm{M}^{+}, 278.1343 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}$ requires $M, 278.1340$).

(2RS,4RS)-(4-Phenylsulfanyl-1-oxaspiro[4.5]dec-2-yl)methanol

 25By the method described for compound 3, toluene-p-sulfonic acid $(5.0 \mathrm{mg}, 26 \mu \mathrm{~mol})$ and a solution of syn-triol $9(62.2 \mathrm{mg}$, $0.210 \mathrm{mmol})$ in dichloromethane $\left(2 \mathrm{~cm}^{3}\right)$ gave the ${ }^{2,4}$ syn-tetrahydrofuran 25 ($53 \mathrm{mg}, 92 \%$) after 48 hours as an oil; R_{f} light petroleum (bp 40-60 ${ }^{\circ} \mathrm{C}$)-diethyl ether, 1:1] $0.17 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) /$ $\mathrm{cm}^{-1} 3589(\mathrm{O}-\mathrm{H}), 1584,1480,1448,1146,1091,1025,958$ and 908; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $7.45-7.37$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$), $7.34-7.17$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 4.08(1 \mathrm{H}$, dddd, $J 8.6,6.8,5.4$ and 3.2 Hz , $\mathrm{CH}-\mathrm{O}), 3.72\left(1 \mathrm{H}\right.$, ddd, $J 11.5,6.2$ and $3.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}$), $3.54\left(1 \mathrm{H}\right.$, ddd, $J 11.7,6.5$ and $\left.5.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 3.46(1 \mathrm{H}$, dd, $J 8.7$ and $7.1 \mathrm{~Hz}, \mathrm{CHSPh}), 2.38(1 \mathrm{H}, \mathrm{dt}, J 12.9$ and 6.9 Hz , $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.01(1 \mathrm{H}, \mathrm{t}, J 6.6 \mathrm{~Hz}, \mathrm{OH}), 1.96(1 \mathrm{H}, \mathrm{dt}, J 12.9$ and $\left.8.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right)$ and $1.77-1.11(10 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 135.6^{-}$($i-\mathrm{PhS}$), $131.4^{+}, 129.0^{+}, 126.9^{+}$, $83.9^{-}(\mathrm{C}-\mathrm{O})$, $76.5^{+}(\mathrm{CH}-\mathrm{O}), 65.2^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right), 55.8^{+}(\mathrm{CHSPh}), 36.1^{-}, 35.4^{-}$, $33.6^{-}, 25.6^{-}, 23.1^{-}$and $22.4^{-} ; \mathrm{m} / \mathrm{z}$ (EI) $278\left(25 \% \mathrm{M}^{+}\right), 180$ (82 , $\left.\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}\right), 149\left(100, \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{SPh}^{+}\right), 131$ (22) and $110(24$, PhSH^{+}); (Found: M^{+}, 278.1347. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}$ requires M, 278.1340).

(3RS,5RS)-2,2-Dimethyl-3-phenylsulfanyltetrahydrofuran-

 5-ylmethanol 27By the method described for compound 3, toluene- p-sulfonic acid ($1.7 \mathrm{mg}, 9.0 \mu \mathrm{~mol}$) and a solution of syn-triol $8(50 \mathrm{mg}, 195$ $\mu \mathrm{mol}$) in dichloromethane ($2.5 \mathrm{~cm}^{3}$) gave the ${ }^{3,5}$ syn-tetrahydrofuran $27(44 \mathrm{mg}, 95 \%)$ after 48 hours as an oil; R_{f} light petroleum (bp $40-60^{\circ} \mathrm{C}$)-diethyl ether, 1:1] $0.09 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1}$ $3593(\mathrm{O}-\mathrm{H}), 3054,2978,2881,1584,1480,1422,1142,1091$ and 1034; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $7.46-7.23$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$), $4.12-4.04$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{O}), 3.70\left(1 \mathrm{H}\right.$, ddd, $J 11.5,6.0$ and $3.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}^{-}}$ $\left.\mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.52\left(1 \mathrm{H}\right.$, ddd, $J 11.5,6.5$ and $\left.5.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right)$, $3.49(1 \mathrm{H}, \mathrm{dd}, J 10.3$ and $6.8 \mathrm{~Hz}, \mathrm{CHSPh}), 2.36(1 \mathrm{H}, \mathrm{dt}, J 13.0$ and $\left.6.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.97(1 \mathrm{H}, \mathrm{dt}, J 13.0$ and 10.1 Hz , $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{A}}\right)$ and $1.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(100.6$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $135.6^{-}(i-\mathrm{PhS}), 131.6^{+}, 129.1^{+}, 126.7^{+}(p-\mathrm{PhS})$, $83.5^{-}(\mathrm{C}-\mathrm{O}), 75.8^{+}(\mathrm{CHOH}), 64.9^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right), 56.0^{+}(\mathrm{CHSPh})$, $35.6^{-}\left(\mathrm{CH}_{2}\right), 27.8^{+}(\mathrm{Me})$ and 25.1^{+}(Me); m / z (EI) $238(43 \%$, M^{+}), 136 (100), 135 (34) and $110\left(24, \mathrm{PhS}^{+}\right)$; (Found: M^{+}, 238.1022. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$ requires $M, 238.1027$).

(2R,4S)-2-Hydroxymethyl-4-phenylsulfanyl-1,8-dioxaspiro[4.5]decane 28

Amberlyst ${ }^{\circledR}(0.35 \mathrm{~g})$ was added to a solution of the triol 7 (53 $\mathrm{mg}, 0.18 \mathrm{mmol}$) in dry dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$. The solution was heated to reflux for 48 hours and the residue was filtered and purified by column chromatography (silica, diethyl ether) to give the ${ }^{2,4}$ anti-tetrahydrofuran 28 as an oil ($42 \mathrm{mg}, 83 \%$); R_{f} (diethyl ether) $0.36 ;[a]_{\mathrm{D}}+4.2$ (c. 0.7 in $\mathrm{CHCl}_{3} ; 78 \%$ ee); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3348(\mathrm{O}-\mathrm{H}), 2785(\mathrm{C}-\mathrm{H}), 2654(\mathrm{C}-\mathrm{H}), 1584$
(PhS) and $1106(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.41(2 \mathrm{H}, \mathrm{dd}$, $J 8.0$ and $1.5 \mathrm{~Hz}, \mathrm{PhS}), 7.31-7.22(3 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 4.20(1 \mathrm{H}, \mathrm{dtd}$, $J 11.0,5.5$ and $3.5 \mathrm{~Hz}, \mathrm{OCH}), 3.82(1 \mathrm{H}$, ddd, $J 11.0,5.0$ and 2.5 $\left.\mathrm{Hz}, \mathrm{OCH}_{2}\right), 3.80-3.68\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.51-3.44(1 \mathrm{H}, \mathrm{m}$, OCH_{2}), $3.37(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}, \mathrm{CHSPh})$, $2.34(1 \mathrm{H}$, ddd, $J 13.0$, 8.0 and $\left.7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.10\left(1 \mathrm{H}, \mathrm{dt}, J 13.0\right.$ and $\left.8.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $1.96\left(1 \mathrm{H}\right.$, ddd, $J 13.5,11.0$ and $\left.4.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{eq}} H_{\mathrm{ax}}\right), 1.90(1 \mathrm{H}$, ddd, $J 13.5,11.0$ and $\left.5.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{eq}} H_{\mathrm{ax}}\right), 1.59(1 \mathrm{H}, \mathrm{dq}, J 13.5$ and $\left.2.5 \mathrm{~Hz}, \mathrm{C}_{\mathrm{eq}} \mathrm{H}_{\mathrm{ax}}\right)$ and $1.38(1 \mathrm{H}, \mathrm{dq}, J 13.5$ and 2.5 Hz , $\left.\mathrm{CH}_{\mathrm{eq}} \mathrm{H}_{\mathrm{ax}}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 134.2^{-}(i-\mathrm{PhS}), 130.4^{+}(\mathrm{PhS})$, $128.1^{+}(\mathrm{PhS}), 126.0^{+}(p-\mathrm{PhS}), 80.9^{-}\left(\mathrm{OC}_{\mathrm{q}}\right), 74.9^{+}\left(\mathrm{OCHCH}_{2}\right)$, $64.1^{-}\left(\mathrm{OCH}_{2}\right), 63.8^{-}\left(\mathrm{OCH}_{2}\right)$, $63.2^{-}\left(\mathrm{OCH}_{2}\right), 54.2^{+}(\mathrm{CHSPh})$, $35.9^{-}\left(\mathrm{CH}_{2}\right), 33.9^{-}\left(\mathrm{CH}_{2}\right)$ and $30.3^{-}\left(\mathrm{CH}_{2}\right) ; m / z(\mathrm{EI}) 280(31 \%$, $\left.\mathrm{M}^{+}\right), 251$ (3), 201 (5), 151 (9), 119 (36), 100 (5) and 69 (100); (Found: $\mathrm{M}^{+}, 280.1120 . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 280.1133$).

(2R,4R)-2-Hydroxymethyl-4-phenylsulfanyl-1,8-dioxaspiro[4.5]decane 29

By the method described for compound 28, Amberlyst ${ }^{\circledR}$ $(0.35 \mathrm{~g})$ and a solution of the triol $\mathbf{1 0}(67 \mathrm{mg}, 0.22 \mathrm{mmol})$ in dry dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ gave a crude product after heating to reflux for 24 hours. The filtered residue was purified by column chromatography (silica, diethyl ether) to give the ${ }^{2,4}$ syn-tetrahydrofuran 29 as an oil ($52 \mathrm{mg}, 87 \%$); R_{f} (diethyl ether) $0.33 ;[a]_{\mathrm{D}}$ +1.5 (c. 1.18 in $\mathrm{CHCl}_{3} ; 78 \%$ ee); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3267$ $(\mathrm{O}-\mathrm{H}), 2818(\mathrm{C}-\mathrm{H}), 1582(\mathrm{PhS})$ and $1103(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; CDCl_{3}) 7.45-7.39 ($2 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$), 7.33-7.20 ($3 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$), 4.10 $(1 \mathrm{H}, \mathrm{dtd}, J 12.0,6.5$ and $3.5 \mathrm{~Hz}, \mathrm{OCH}), 3.82(1 \mathrm{H}$, ddd, $J 11.0$, 5.0 and $\left.2.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.78-3.67\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.55(1 \mathrm{H}$, dt, $J 11.5$ and $\left.5.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.46(1 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{CHSPh})$, $2.40\left(1 \mathrm{H}, \mathrm{dt}, J 13.5\right.$ and $\left.7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.05-1.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $1.81\left(1 \mathrm{H}, \mathrm{ddd}, J 13.5,10.5\right.$ and $\left.6.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{eq}} H_{\mathrm{ax}}\right), 1.60(1 \mathrm{H}, \mathrm{dq}$, $J 13.5$ and $\left.2.5 \mathrm{~Hz}, \mathrm{CH}_{\text {eq }} \mathrm{H}_{\mathrm{ax}}\right)$ and $1.48(1 \mathrm{H}, \mathrm{dq}, J 13.5$ and 2.5 $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{eq}} \mathrm{H}_{\mathrm{ax}}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 135.4^{-}(i-\mathrm{PhS}), 132.1^{+}$ $(\mathrm{PhS}), 129.5^{+}(\mathrm{PhS}), 127.6^{+}(p-\mathrm{PhS}), 81.8^{-}\left(\mathrm{OC}_{\mathrm{q}}\right), 77.2^{+}$ $\left(\mathrm{OCHCH}_{2}\right), 65.5^{-}\left(\mathrm{OCH}_{2}\right), 65.1^{-}\left(\mathrm{OCH}_{2}\right), 64.8^{-}\left(\mathrm{OCH}_{2}\right), 56.1^{+}$ (CHSPh), 36.6- $\left(\mathrm{CH}_{2}\right), 35.4^{-}\left(\mathrm{CH}_{2}\right)$ and $34.5^{-}\left(\mathrm{CH}_{2}\right) ; m / z(\mathrm{EI})$ $280\left(21 \%, \mathrm{M}^{+}\right), 251$ (2), 222 (4), 169 (48), 119 (37), 100 (5) and 69 (100); (Found: $\mathrm{M}^{+}, 280.1143 . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}$ requires M, 280.1133).
(3RS,5SR)-2,2-Dimethyl-3-phenylsulfanyltetrahydropyran-5-yl 3,5-dinitrobenzoate 30 and ($3 R S, 5 S R$)-2,2-Dimethyl-3-phenyl-sulfanyltetrahydrofuran-5-ylmethyl 3,5-dinitrobenzoate

A 1:1 mixture of alcohols $\mathbf{3}$ and $\mathbf{4}(98 \mathrm{mg}, 412 \mu \mathrm{~mol})$ was dissolved in pyridine ($2.5 \mathrm{~cm}^{3}$) and 3,5-dinitrobenzoyl chloride $(97 \mathrm{mg}, 421 \mu \mathrm{~mol})$ was added. The resulting pale yellow solution was stirred under argon for 1 hour and diluted with diethyl ether $\left(4 \mathrm{~cm}^{3}\right)$, at which point a cloudy white precipitate was formed. Dilute hydrochloric acid ($15 \mathrm{~cm}^{3}, 2.0 \mathrm{~mol} \mathrm{dm}^{-3}$) was added and the aqueous layer extracted twice with diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$. The combined organic fractions were dried over anhydrous magnesium sulfate and the solvent evaporated under reduced pressure to give a crude product as a pale yellow solid. The residue was purified by column chromatography [silica, light petroleum (bp 40-60 ${ }^{\circ} \mathrm{C}$)-diethyl ether, 4:1] to give the tetrahydropyran 30 ($51 \mathrm{mg}, 29 \%$) as bright yellow needles which were recrystallised from hexane-chloroform (9:1), mp 128-130 ${ }^{\circ} \mathrm{C}$ (from hexane-chloroform); R_{f} light petroleum (bp 40-60 ${ }^{\circ} \mathrm{C}$)-diethyl ether, 4:1] 0.25; $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3101,2880,1735$ (C=O), 1628, $1549\left(\mathrm{NO}_{2}\right), 1478,1462,1346\left(\mathrm{NO}_{2}\right), 1290,1256$, $1169,1138,1088$ and $990 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.23(1 \mathrm{H}, \mathrm{t}$, $J 2.2 \mathrm{~Hz}, p-\mathrm{Ar}), 9.13(2 \mathrm{H}, \mathrm{d}, J 2.1 \mathrm{~Hz}, o-\mathrm{Ar}), 7.48-7.43(2 \mathrm{H}, \mathrm{m}$, PhS), $7.36-7.26(3 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 5.10(1 \mathrm{H}, \mathrm{tt}, J 10.2$ and 5.1 Hz , $\mathrm{CH}-\mathrm{O}), 3.95\left(1 \mathrm{H}\right.$, ddd, $J 11.2,5.3$ and $\left.2.0 \mathrm{~Hz}, \mathrm{CH}_{\text {eq }} \mathrm{H}_{\mathrm{ax}} \mathrm{O}\right), 3.67$ $\left(1 \mathrm{H}, \mathrm{dd}, J 11.1\right.$ and $\left.10.1 \mathrm{~Hz}, \mathrm{CH}_{\text {eq }} H_{\mathrm{ax}} \mathrm{O}\right)$, $3.18(1 \mathrm{H}, \mathrm{dd}, J 12.3$ and $4.2 \mathrm{~Hz}, \mathrm{CHSPh}), 2.48(1 \mathrm{H}$, dtd, $J 12.8,4.7$ and 2.0 Hz , $\left.\mathrm{C}_{\mathrm{eq}} \mathrm{H}_{\mathrm{ax}}\right), 2.07\left(1 \mathrm{H}, \mathrm{dt}, J 12.5\right.$ and $\left.11.0 \mathrm{~Hz}, \mathrm{CH}_{\text {eq }} \mathrm{H}_{\mathrm{ax}}\right), 1.48$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{A}}\right)$ and $1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$
$161.6^{-}(\mathrm{C}=\mathrm{O}), 148.7^{-}\left(\mathrm{C}-\mathrm{NO}_{2}\right), 134.6^{-}, 133.6^{-}, 132.3^{+}, 129.5^{+}$, $129.3^{+}, 127.6^{+}, 122.6^{+}, 75.4^{-}(\mathrm{C}-\mathrm{O}), 70.6^{+}(\mathrm{CH}-\mathrm{O}), 62.1^{-}$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 53.1^{+}(\mathrm{CSPh}), 33.4^{-}\left(\mathrm{CH}_{2}\right), 28.4^{+}\left(\mathrm{CH}_{3}\right)$ and 18.4^{+} $\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 432$ ($100 \%, \mathrm{M}^{+}$), 220 (19), 195 (37), 162 (20) and 136 (56); (Found: $\mathrm{M}^{+}, 432.0971 . \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}$ requires M, 432.0991) CCDC 192684. See http://www.rsc.org/suppdata/p1/ b2/b208556a/ for crystallographic files in .cif or other electronic format. Also, the tetrahydrofuran ($42 \mathrm{mg}, 24 \%$) as pale yellow needles which were recrystallised from hexane-chloroform (9:1), mp 141-142 ${ }^{\circ} \mathrm{C}$ (from hexane-chloroform); R_{f} light petroleum (bp 40-60 ${ }^{\circ} \mathrm{C}$)-diethyl ether, 4:1] $0.15 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) /$ $\mathrm{cm}^{-1} 3112,2859,1734(\mathrm{C}=\mathrm{O}), 1628,1549\left(\mathrm{NO}_{2}\right), 1481,1347$ $\left(\mathrm{NO}_{2}\right), 1290$ and $991 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.24(1 \mathrm{H}, \mathrm{t}, J 2.1$ Hz, p-Ar), $9.16(2 \mathrm{H}, \mathrm{d}, J 2.2 \mathrm{~Hz}, o-\mathrm{Ar}), 7.45-7.41(2 \mathrm{H}, \mathrm{m}$, $\mathrm{PhS}), 7.32-7.21(3 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 4.52-4.36(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{O}$, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}$ and $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 3.43(1 \mathrm{H}, \mathrm{t}, J 9.0 \mathrm{~Hz}, \mathrm{CHSPh})$, $2.40-2.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right.$ and $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{A}}\right)$ and $1.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 162.5^{-}(\mathrm{C}=\mathrm{O}), 148.7^{-}$ $\left(\mathrm{C}-\mathrm{NO}_{2}\right), 135.1^{-}, 133.7^{-}, 131.6^{+}, 129.5^{+}, 129.2^{+}, 127.3^{+}$, 122.5^{+}, $84.1^{-}(\mathrm{C}-\mathrm{O}), 72.8^{+}(\mathrm{CH}-\mathrm{O}), 68.9^{-}\left(\mathrm{CH}_{2} \mathrm{O}\right), 55.3^{+}$ $(\mathrm{CSPh}), 36.3^{-}\left(\mathrm{CH}_{2}\right), 27.8^{+}\left(\mathrm{CH}_{3}\right)$ and $22.4^{+}\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(+\mathrm{ES})$ $455\left(8 \%, \mathrm{MNa}^{+}\right), 413$ (36), 373 (35), 316 (16) and 261 (100); (Found: MNa^{+}, 455.0893. $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SNa}$ requires 455.0883).

(3RS)-1-(Cyclohexan-1-ol)butane-3,4-diol 35

By the method described for compound 5, potassium ferricyanide ($6.40 \mathrm{~g}, 19.4 \mathrm{mmol}$), potassium carbonate $(2.68 \mathrm{~g}, 19.4$ mmol), osmium(III) chloride hydrate ($5.6 \mathrm{mg}, 65.4 \mu \mathrm{~mol}, 0.7$ $\mathrm{mol} \%$), quinuclidine ($104 \mathrm{mg}, 0.930 \mathrm{mmol}, 3.5 \mathrm{~mol}^{2} \%$) and alkene $36(1.0 \mathrm{~g}, 6.48 \mathrm{mmol})$ in 2-methylpropan-2-ol $\left(35 \mathrm{~cm}^{3}\right)$ and water ($35 \mathrm{~cm}^{3}$) gave a crude product. Purification by column chromatography (silica, ethyl acetate) gave triol 35 (940 $\mathrm{mg}, 77 \%)$ as an oil; $R_{\mathrm{f}}($ ethyl acetate $) 0.10 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1}$ $3595(\mathrm{O}-\mathrm{H}), 3396(\mathrm{br}, \mathrm{O}-\mathrm{H}), 2935,2859,1449,1390$ and 1348; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 3.79-3.57 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$ and $\mathrm{CH}_{\mathrm{A}^{-}}$ $\left.\mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.47\left(1 \mathrm{H}, \mathrm{dd}, J 8.4\right.$ and $\left.5.6 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 2.86^{*}$ $(3 \mathrm{H}, \mathrm{br} \mathrm{s}, 3 \times \mathrm{OH}), 1.69-1.21(14 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $72.7^{+}(\mathrm{CH}-\mathrm{OH}), 71.3^{-}(\mathrm{C}-\mathrm{OH}), 66.7^{-}(\mathrm{C}-\mathrm{OH}), 37.9^{-}, 37.8^{-}$, $37.1^{-}, 26.5^{-}, 25.8^{-}, 22.3^{-}$and $22.2^{-} ; m / z(+$ FIB $) 189(20 \%$, MH^{+}), 171 (54), 154 (100), 137 (70), 136 (86) and 107 (28); (Found: MH^{+}, 189.1497. $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{3}$ requires $M, 189.1491$)

1-(Cyclohexan-1-ol)but-3-ene 36

4-Bromobut-1-ene ($5.0 \mathrm{~g}, 3.76 \mathrm{~cm}^{3}, 37.0 \mathrm{mmol}$) was slowly added to a stirred suspension of magnesium turnings $(0.99 \mathrm{~g}$, $40.7 \mathrm{mmol}, 1.1 \mathrm{eq}$. .) and one small crystal of iodine in diethyl ether $\left(50 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ under argon. The solution was allowed to warm to room temperature once the addition was complete and stirred for 2 hours. The reaction was again cooled to $0^{\circ} \mathrm{C}$ and cyclohexanone ($3.99 \mathrm{~g}, 4.22 \mathrm{~cm}^{3}, 40.7 \mathrm{mmol}$) in diethyl ether $\left(5 \mathrm{~cm}^{3}\right)$ slowly added. Once the addition was complete the mixture was warmed to ambient temperature and stirring continued for 1 hour. Saturated aqueous ammonium chloride solution was then slowly added and the mixture transferred to a separating funnel. The aqueous layer was extracted three times with diethyl ether $\left(30 \mathrm{~cm}^{3}\right)$ and the combined organic extracts washed with water $\left(30 \mathrm{~cm}^{3}\right)$, saturated brine $\left(30 \mathrm{~cm}^{3}\right)$ and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give a crude product. Purification by column chromatography [silica, light petroleum (bp 40-60 ${ }^{\circ} \mathrm{C}$)diethyl ether, 4:1] gave the alkene $36(2.88 \mathrm{~g}, 50 \%)$ as an oil; R_{f} light petroleum (bp $40-60^{\circ} \mathrm{C}$)-diethyl ether, 4:1] 0.16 ; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3596(\mathrm{O}-\mathrm{H}), 2926,2857,1639(\mathrm{C}=\mathrm{C}), 1449$, 1382, 1346 and 1148; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.86(1 \mathrm{H}$, ddt, $J 16.8,10.1$ and $\left.6.6 \mathrm{~Hz}, \mathrm{C} H=\mathrm{CH}_{2}\right), 5.04(1 \mathrm{H}, \mathrm{dq}, J 17.1$ and $\left.1.7 \mathrm{~Hz}, \mathrm{CH}_{\text {trans }} \mathrm{H}_{\text {cis }}=\mathrm{CH}\right), 4.99-4.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {trans }} H_{\text {cis }}=\mathrm{CH}\right)$, 2.25-2.09 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$) and 1.94-1.17 ($13 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 139.3^{+}\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 114.3^{-}\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$,
$71.4^{-}(\mathrm{C}-\mathrm{OH}), 41.4^{-}, 37.5^{-}, 27.5^{-}, 25.8^{-}$and $22.2^{-} ; \mathrm{m} / \mathrm{z}(\mathrm{EI})$ $136\left(2 \%, \mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 99\left(52, \mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 84$ (42), 55 (78, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}{ }^{+}$) and 49 (100).

(2RS)-(1-Oxaspiro[4.5]dec-2-yl)methanol 37, (2RS)-4-Cyclo-hexylidenebutane-1,2-diol 38 and (2RS)-4-(Cyclohex-1-ene)-butane-1,2-diol 39

By the method described for compound 23, triol 35 (143 mg , $761 \mu \mathrm{~mol}$) and toluene- p-sulfonic acid ($20 \mathrm{mg}, 106 \mu \mathrm{~mol}$) in dichloromethane (5 ml) gave a crude product after three days whose ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of three components. Purification by column chromatography [silica, light petroleum (bp 40-60 ${ }^{\circ} \mathrm{C}$)-diethyl ether, 9:1] gave the tetrahydrofuran $37(67 \mathrm{mg}, 47 \%)$ as an oil; $R_{\mathrm{f}}[$ light petroleum (bp $40-60$ ${ }^{\circ} \mathrm{C}$)-diethyl ether, $\left.9: 1\right] 0.25 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3583(\mathrm{O}-\mathrm{H})$, 3056, 2934, 2858, 1449, 1401, 1361, 1331, 1311, 1093, 1068, 1039, 1023 and 908; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.15-4.03(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}-\mathrm{O}$), $3.67\left(1 \mathrm{H}\right.$, ddd, $J 11.3,6.0$ and $3.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}$), $3.45\left(1 \mathrm{H}, \mathrm{dt}, 11.5\right.$ and $\left.6.0 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 2.05^{*}(1 \mathrm{H}, \mathrm{t}, J 6.3$ $\mathrm{Hz}, \mathrm{OH})$ and $2.02-1.26(14 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 83.4^{-}$ $(\mathrm{C}-\mathrm{O}), 78.1^{+}(\mathrm{CH}-\mathrm{O}), 65.3^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right), 38.4^{-}, 37.3^{-}, 36.0^{-}$, $27.1^{-}, 25.7^{-}, 24.1^{-}$and $23.7^{-} ; m / z$ (EI) $170\left(25 \%\right.$, M $\left.^{+}\right), 139$ (100 , $\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{OH}$), 127 (81), 121 (69), 114 (14), 95 (32), 83 (31), 81 (32) and 67 (30); (Found: $\mathrm{M}^{+}, 170.1310 . \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}$ requires M, 170.1307) and the alkenes endo- 38 and exo- $39(16 \mathrm{mg}, 11 \% ; 2: 1$, endo:exo) as an oil; $R_{\mathrm{f}}\left[\right.$ light petroleum (bp $40-60^{\circ} \mathrm{C}$)-diethyl ether, 9:1] 0.06; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3585(\mathrm{br}, \mathrm{O}-\mathrm{H}), 2931,2857$ and $1642(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.44(1 \mathrm{H}$, br s, endo $\mathrm{CH}=\mathrm{C}), 5.09(1 \mathrm{H}$, br t, $J 7.6 \mathrm{~Hz}$, exo $\mathrm{CH}=\mathrm{C}), 3.78-3.58(4 \mathrm{H}$, m), 3.54-3.38 ($2 \mathrm{H}, \mathrm{m}$) and 2.43-1.39 ($24 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}}(100.6 \mathrm{MHz}$; CDCl_{3}) 143.8^{-}(exo $\mathrm{CH}=C$), 137.3- (endo $\mathrm{CH}=C$), 121.6^{+}(endo $C H=C), 115.7^{+}$(exo $\mathrm{CH}=\mathrm{C}$), 72.2^{+}(endo and exo $\mathrm{CH}-\mathrm{OH}$), 66.8^{-}(endo $\mathrm{CH}_{2} \mathrm{OH}$), 66.3^{-}(exo $\left.\mathrm{CH}_{2} \mathrm{OH}\right)$, 37.3- (exo CH_{2}), 34.1^{-}(endo CH_{2}), 31.2- (exo CH_{2}), 31.0- (endo CH_{2}), 28.8^{-} (exo CH_{2}), 28.7^{-}(exo CH_{2}), 28.2- (endo CH_{2}), 27.9^{-}(exo CH_{2}), $26.8^{-}\left(\right.$exo $\left.\mathrm{CH}_{2}\right)$) 25.2^{-}(endo CH_{2}), 22.9^{-}(endo CH_{2}) and 22.5(endo CH_{2}); (Found: MNa^{+}, 193.1192. $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}$ requires M, 193.1199).

Acknowledgements

We thank the EPSRC for grants to LC and DH, and AstraZeneca for extra support to DH. We are very grateful to Dr J. E. Davies and Dr N. Feeder for the single crystal X-ray diffraction analysis.

Notes and references

1 (a) D. House, F. Kerr and S. Warren, Chem. Commun., 2000, 1779; (b) D. J. Fox, D. House, F. Kerr and S. Warren, Chem. Commun., 2000, 1781; (c) D. House, F. Kerr and S. Warren, Chem. Commun., 2000, 1783.
2 Selenium and iodine electrophiles have been used to great effect in the stereoselective synthesis of oxygen heterocycles. For leading references on the use of selenium see: (a) L. Uehlin, G. Fragale and T. Wirth, Chem.-Eur. J., 2002, 8, 1125; (b) L. Uehlin and T. Wirth, Org. Lett., 2001, 3, 2931; (c) T. Wirth, Tetrahedron, 1999, 55, 1; (d) G. Fragale, M. Neuburger and T. Wirth, Chem. Commun., 1998, 1867, and for iodine see: (e) J. Haas, S. Piguel and T. Wirth, Org. Lett., 2002, 4, 297; (f) J. M. Barks, G. G. Weingarten and D. W. Knight, J. Chem. Soc., Perkin Trans. 1, 2000, 3469; (g) S. B. Bedford, K. E. Bell, F. Bennett, C. J. Hayes, D. W. Knight and D. E. Shaw, J. Chem. Soc., Perkin Trans. 1, 1999, 2143.

3 J. Eames and S. Warren, Tetrahedron Lett., 1996, 37, 3525.
4 By 'unrearranged' we mean a heterocycle formed without the sulfanyl group undergoing a $[1,2]$ migration. Conversely, a 'rearranged' heterocycle is one formed by [1,2]-PhS migration.
5 (a) M. Gruttadauria and R. Noto, Tetrahedron Lett., 1999, 40, 8477; (b) M. Gruttadauria, P. Lo Meo and R. Noto, Tetrahedron, 1999, 55, 4769; (c) M. Gruttadauria, P. Lo Meo and R. Noto, Tetrahedron Lett., 1999, 55, 14097.
6 R. S. Narayan, M. Sivakumar, E. Bouhlel and B. Borhan, Org. Lett., 2001, 3, 2489.

7 J. Eames, M. A. D. Heras, R. V. H. Jones and S. Warren, Tetrahedron Lett., 1996, 37, 4581.
8 H. C. Kolb, M. S. Vannieuwenhze and K. B. Sharpless, Chem. Rev., 1994, 94, 2483.
9 V. K. Aggarwal, I. Coldham, S. McIntyre and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1991, 451.
10 E. J. Corey and J. W. Suggs, Tetrahedron Lett., 1975, 2647.
11 (a) G. A. Crispino, K.-S. Jeong, H. C. Kolb, Z.-M. Wang, D. Xu and K. B. Sharpless, J. Org. Chem., 1993, 58, 3785; (b) K. B. Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung, H.-L. Kwong, K. Morikawa, Z.-M. Wang, D. Xu and X.-L. Zhang, J. Org. Chem., 1992, 57, 2768; (c) K. B. Sharpless, W. Amberg, M. Beller, H. Chen, J. Hartung, Y. Kawanami, D. Lübben, E. Manoury, Y. Ogino, T. Shibata and T. Ukita, J. Org. Chem., 1991, 56, 4585.
12 D. A. Evans, K. T. Chapman and E. M. Carreira, J. Am. Chem. Soc., 1988, 110, 3560.

13 K. M. Chen, G. E. Hardtmann, K. Prasad, O. Repič and M. J. Shapiro, Tetrahedron Lett., 1987, 28, 155.

14 J. Eames, H. J. Mitchell, A. Nelson, P. O'Brien, S. Warren and P. Wyatt, J. Chem. Soc., Perkin Trans. 1, 1999, 1095.

15 L. Djakovitch, J. Eames, R. V. H. Jones, S. McIntyre and S. Warren, Tetrahedron Lett., 1995, 36, 1723.
16 J. Eames, N. Kuhnert, F. H. Sansbury and S. Warren, Synlett, 1999, 8, 1211.
17 F. H. Sansbury and S. Warren, Tetrahedron Lett., 1992, 33, 539.
18 (a) P. E. Eaton, G. F. Cooper, R. C. Johnson and R. H. Mueller, J. Org. Chem., 1972, 37, 1947; (b) B. Mudryk and T. Cohen, J. Org. Chem., 1989, 54, 5657; (c) J. T. Negri, J. Am. Chem. Soc., 1992, 114, 8835; (d) D. Grée, R. Grée, T. B. Lowringer, J. Martelli, J. T. Negri and L. A. Paquette, J. Am. Chem. Soc., 1992, 114, 8841.
19 J. T. Edward, E. Cooke and T. C. Paradellis, Can. J. Chem., 1982, 60, 2546.

20 J. R. Snyder and A. S. Serianni, Carbohydr. Res., 1991, 210, 21.

[^0]: \dagger When the temperature was reduced to $0^{\circ} \mathrm{C}$ only a small improvement in enantiomeric excess was noticed.

